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A substrate-less nanomesh receptor 
with meta-learning for rapid hand task 
recognition
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Seunghun Koh2, Samuel E. Root1, Jaewon Kim3, Bao-Nguyen T. Nguyen    1, 
Yuya Nishio1, Seonggeun Han3, Joonhwa Choi3, C-Yoon Kim5, 
Jeffrey B.-H. Tok    1, Sungho Jo    2  , Seung Hwan Ko    3   & Zhenan Bao    1 

With the help of machine learning, electronic devices—including electronic 
gloves and electronic skins—can track the movement of human hands 
and perform tasks such as object and gesture recognition. However, such 
devices remain bulky and lack an ability to adapt to the curvature of the 
body. Furthermore, existing models for signal processing require large 
amounts of labelled data for recognizing individual tasks for every user. 
Here we report a substrate-less nanomesh receptor that is coupled with an 
unsupervised meta-learning framework and can provide user-independent, 
data-efficient recognition of different hand tasks. The nanomesh, which 
is made from biocompatible materials and can be directly printed on a 
person’s hand, mimics human cutaneous receptors by translating electrical 
resistance changes from fine skin stretches into proprioception. A single 
nanomesh can simultaneously measure finger movements from multiple 
joints, providing a simple user implementation and low computational 
cost. We also develop a time-dependent contrastive learning algorithm 
that can differentiate between different unlabelled motion signals. This 
meta-learned information is then used to rapidly adapt to various users  
and tasks, including command recognition, keyboard typing and  
object recognition.

Humans can adapt to a diverse range of daily tasks with the aid of sen-
sory feedback. Proprioception, in particular, provides an understand-
ing of the real-time postural configuration of the hand and plays a key 
role in interactive tasks such as object recognition, manipulation and 
communication1–3. Fundamental knowledge on proprioception is devel-
oped at an early age in children (the sensorimotor stage4) and involves 
correlating hand motions with the information relayed by cutaneous 

receptors distributed throughout various locations of skin associated 
with skin stretching during the motion5–7. This sensorimotor informa-
tion serves as prior knowledge8,9, which helps infants to quickly learn 
to perform new tasks with only a few trials. This process constitutes 
the basis of meta-learning10,11 (Fig. 1a).

Electronic devices can identify the movement and intended tasks 
of the human hand. For example, electromyography wrist bands 
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Similar to the learning process during an infant’s sensorimotor 
stage, our unlabelled random finger motions provide prior motion 
representation knowledge. As a result, our learning framework does 
not require large amounts of data to be collected for each individual 
user. We developed time-dependent contrastive (TD-C) learning to 
provide an awareness of temporal continuity and to generate a motion 
feature space (MFS) representation of prior knowledge. This allows 
our system to learn prior knowledge using unsupervised contrastive 
learning from unlabelled signals collected from three different users 
to distinguish user-independent, task-specific sensor signal patterns 
from random hand motions. This prior knowledge can subsequently 
be transferred to other users with an accuracy of 80% within 20 transfer 
training epochs. We show that the pretrained model can quickly adapt 
to different daily tasks—motion command, keypad typing, two-handed 
keyboard typing and object recognition—using only a few hand signals.

Cutaneous nanomesh artificial mechanoreceptor
Proprioception—our body’s ability to sense movement, action and 
location—relies on encoding mechanical signals collected by numer-
ous cutaneous receptors into neural representations, that is, patterns 
of neural activities7. These cutaneous receptors are activated by the 
stretching of the skin and can detect various joint movements (Sup-
plementary Note 1). Such a function can be emulated by employing a 
single two-terminal substrate-less nanomesh element along the index 
finger extending to the wrist. The integrated signals of the entire finger 
postures and movements can be collected (Fig. 2a). Due to the direct 
contact of the nanomesh with skin, it closely follows the topography 
of the skin and transforms even micro-movements into resistance 
variations with high sensitivity (Supplementary Fig. 5). Signal outputs 
corresponding to fine details of elongation and compression of the skin 
due to arbitrary hand movements are then collected and transmitted 
by a wireless module (Methods and Extended Data Fig. 3).

In addition to the ability to generate proprioception-like diverse 
sensing output patterns based on fine movements of finger and 
wrist, our nanomesh is biocompatible, breathable and mechanically 

and wearable electronic gloves can track hand movements. With the 
help of machine learning, these devices can perform complex tasks 
such as object interaction12–14, translation of finger spelling15,16 and 
gesture recognition17,18. However, their bulkiness and constraints on 
body movement limits their widespread adoption. Electronic skin 
sensors—such as artificial mechanoreceptors19,20, ultrathin sensors21, 
stretchable sensors22,23 and nanomesh sensors24–26—have rapidly 
developed in recent years, but they typically require multiple sensors 
and a high level of system complexity to pinpoint the motions from 
multiple joints22. Furthermore, the algorithms that have been used 
in such applications are based on supervised training methods that 
require large amounts of labelled data to perform individual tasks12. 
Since the large variability of tasks and differences in individual body 
shapes generate different sensor signal patterns, these methods 
require intensive data collection for every single user and/or task27,28 
(Extended Data Fig. 1).

In this Article, we report the development of a nanomesh artifi-
cial mechanoreceptor that is integrated with an unsupervised meta- 
learning scheme and can be used for the data-efficient, user- 
independent recognition of different hand tasks. The nanomesh is 
based on biocompatible materials and can be directly printed onto 
skin without an external substrate, which improves user comfort25 and 
increases its sensitivity. The system can collect signal patterns from 
fine details of skin stretches and can be used to extract propriocep-
tion information analogous to the way cutaneous receptors provide 
signal patterns for hand motion recognition (Supplementary Note 1 
and Supplementary Fig. 1). With this approach, complex propriocep-
tive signals can be decoded using information from a single sensor 
along the index finger, without the need for a multisensing array. 
Multijoint proprioceptive information can be reconstructed from 
low-dimensional data, reducing the computational processing time 
of our learning network (Supplementary Note 2 and Supplementary 
Fig. 2). When performing different tasks, signal patterns from various 
joint movements are transmitted using an attached wireless module 
placed on the wrist (Fig. 1b).
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Fig. 1 | Artificial sensory intelligence system. a, Illustration of human 
sensorimotor stage that includes the meta-learning of motions through 
cutaneous receptors (proprioceptive information to the central nervous system 
(CNS)) and its rapid adaptation to unknown tasks. Resembling this nature, the 
first stage of our learning agent extracts the prior knowledge of human motion 
as MFS through unsupervised TD-C learning from random hand motion. Prior 

knowledge is then transferred with few-shot labels that allows rapid adaptation 
to versatile human tasks. b, An artificial sensory intelligence system that consists 
of printed, biocompatible nanomesh cutaneous receptors directly connected 
with a wireless Bluetooth module through a nanomesh connector (NC), and is 
further trained through few-shot meta-learning.
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stable (Fig. 2b). The gold-coated Ag (core)/Au (shell) nanostructures 
of the nanomesh prevent the cytotoxic silver ions from direct con-
tact with skin29. The long dimension of the Ag (core) wires (length, 
~80 μm) results in high mechanical stability30 (Supplementary  
Fig. 5). No inflammation response of skin to the nanomesh was 
observed during in vitro and in vivo experiments (Supplementary 
Fig. 6). A polyurethane (PU) coating was sprayed onto the nanomesh 
to create a droplet-like porous structure to prevent the nanomesh 
from being easily scratched and retaining an air permeability of more 
than 40 mm s–1 (Supplementary Fig. 8). A scratch test was carried out 
in which the sample was printed on porcine skin to mimic human 
skin. The PU-reinforced nanomesh (Supplementary Fig. 10) outlasted 
the unprotected nanomesh (over 1,500 cycles) when subjected to 

scratching from a silicon tip (Supplementary Fig. 11). These results 
show that the PU-protected nanomesh is suitable for daily activities 
(Supplementary Note 4 and Supplementary Figs. 3 and 13), but can 
still be removed as needed by rubbing during handwashing (Supple-
mentary Fig. 12). Furthermore, the nanomesh was readily applied to 
skin using a custom-designed portable skin-printing device (Fig. 2g, 
Supplementary Fig. 14 and Supplementary Video 6). A subsequently 
attached silicone-encapsulated wearable wireless module further 
provided user comfort and ensured a self-contained system (Extended 
Data Fig. 3 and Supplementary Video 7).

The substrate-less feature of our artificial receptor is a marked 
improvement from previously reported substrate-based wear-
able electronics. Due to its ultraconformal nature (Supplementary  
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Fig. 2 | Nanomesh and device performance. a, Comparison between a human 
cutaneous receptor and our nanomesh receptor. Resistance variations generated 
by the nanomesh are measured through the wireless module. b, Reinforced 
nanomesh through consecutive printing of PU and core–shell Ag@Au structures. 
The nanomesh shows endurance against cyclic friction and maintains high 
breathability and biocompatibility. The image on the right shows the intimate 
contact of the nanomesh above the skin with a magnified view via the scanning 
electron microscopy (SEM) image. The images are representative of three 

independent experiments. c, Photograph of the portable nanomesh printer. 
d, Traditional electronics and substrate-less nanomesh under 15% strain. The 
substrate constrains the wrinkles due to its lack of intimate contact (Methods). 
 e, Nanomesh on the MCP area is activated by the PIP movement alone in 
traditional electronic design (substrate thickness, 6 μm; modulus, 7 MPa), 
whereas no coupling was seen in our design. The nanomesh was printed with 
16 cycles of spraying. f, Nanomesh response to both finger and wrist movements.
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Note 3 and Supplementary Fig. 7), the substrate-less nanomesh enables 
capturing proprioceptive signals without losing its local information 
(Supplementary Fig. 21). Although ultrathin sensors (sub-micrometre) 
were recently demonstrated, challenges remain in terms of reduc-
ing motion artifact noises since even an extremely thin layer can still 
suffer from substantial information degradation25. The benefit of 
reducing motion artifacts by directly printed sensors on the human 
body has been previously demonstrated31. The high conformability 
of our substrate-less interface is critical in the resistance of the sensor 
to motion artifacts. As illustrated in Fig. 2d, during the flexion of joints 
with a printed substrate-less nanomesh, the strain caused by the open-
ing and closing of the wrinkles contributed to a majority of detected 
changes. However, the presence of a substrate reduces the conformabil-
ity of the sensor and hinders the detection of changes associated with 
wrinkle movement, making it harder to detect intricate changes from 
different types of finger movement. In addition, we designed a control 
experiment in which a thin layer of PU substrate (6 µm) was applied 
before nanomesh printing and compared with two separate printed 
substrate-less nanomesh sensors, to gather signals from both proximal 
interphalangeal (PIP) and metacarpophalangeal (MCP) regions (Fig. 2e 
and Supplementary Fig. 9). During the isolated PIP movement under 
normal conditions, the stretching of the substrate placed on the top 
of MCP joints (tugging the MCP region; Fig. 2e) resulted in strong sig-
nal changes in the MCP (Sig #2) area. However, for the substrate-less 
nanomesh, most of the strain was centred on the PIP joint, activating 
only the nanomeshes on the PIP (Sig #1) area (resolution, 15 mm; Sup-
plementary Fig. 9). The localized and decoupled signal properties of 
the substrate-less nanomesh enabled better learning performance 
(Extended Data Fig. 4). In contrast, performance degradation can be 
observed on applying a substrate. The nanomesh further differentiated 
various patterns of hand motions (Fig. 2f) and exhibited high durability 
on various environmental effects (Supplementary Note 4 and Sup-
plementary Fig. 3). These overall characteristics of the substrate-less 
nanomesh rendered the measurement of multijoint proprioceptive 
information with a single sensor element possible (Supplementary 
Fig. 21). Importantly, our approach enabled the minimization of circuit 
complexity and computing resources by providing low-dimensional 
but highly informative proprioceptive information to the learning 
network (Supplementary Note 2).

Meta-learning and few-shot adaptation to a  
new user
Inspired by the development process of proprioception during the 
sensorimotor stage, we aim to create a general latent feature space, 
termed MFS, to represent prior knowledge of human finger motions 
and make it generalizable to different users and daily tasks. For arbi-
trary users with newly printed sensors, different signal patterns will 
be generated including changes in the signal amplitudes and frequen-
cies due to distinctive hand shapes and postures (Supplementary  
Fig. 15). When a learning model tries to infer hand gestures from signals 
generated by users that were not included in the training dataset, the 
variabilities lead to substantial out-of-distribution and domain shift 
errors27,28. Furthermore, considering the diversity of hand gestures 
and tasks performed in daily lives, it was necessary to both collect a 
labelled training dataset and modify the model architecture for each 
individual task when applying previous supervised learning models to 
general usage. To address these limitations, we set out to generate a 
separable MFS that can be used on signal patterns not shown in the train-
ing dataset. Although other stable methods exist for training neural 
networks to build feature spaces for later adaptations, these methods 
either deal with formalized data (tokenized words32,33 or images34,35) or 
have restricted target users and tasks12,36. Consequently, these meth-
ods are unable to use small amounts of random motion data to dif-
ferentiate pattern differences caused by variations in both tasks and 
user. Therefore, instead of mapping sensor signals to specific motion 

labels, we developed a learning model that utilizes unlabelled random 
motion data to meta-learn, allowing us to discriminate between differ-
ent signals by projecting signals into a separable space. In short, after a 
new user provides a small set of actions, these signals are separated in 
our MFS to be compared with real-time user inputs, which allows our 
metric-based inference mechanism to correctly recognize gestures of 
the user even though the signal patterns are different from those of the 
users and tasks in the training data.

To generate MFS without labels, we adopt an unsupervised learn-
ing method called contrastive learning in which the model learns to 
discriminate different inputs by maximizing the similarities of positive 
pairs augmented from the same instances and minimizing the similari-
ties of different instances. However, recently developed methods37,38 
have been designed to encode image data and do not consider time 
correlation. Analogous to how the awareness of motion continuity in 
time helps infants to develop a stable perception39, models without 
time consideration would inevitably omit consecutive sensor sig-
nals, resulting in an unstable motion space, which lowers the accuracy 
(Extended Data Fig. 5e). Furthermore, we need to carefully select data 
augmentation methods, such that the corresponding hand postures 
of the data-augmented signals remain consistent.

We, therefore, propose TD-C learning that uses temporal features 
to generate MFS from unlabelled random hand motions. Instead of 
providing specific labels to train our neural network, we generated 
positive pairs based on time-wise correlation and trained our model 
to minimize distances (based on cosine similarity) between the posi-
tively paired signals in our encoded latent space. First, we generated 
strong positive pairs through data augmentation. Given a sensor input 
grouped with a sliding time window (Supplementary Note 5 and Supple-
mentary Fig. 4 show the model performance for various time-window 
sizes), we generated two augmented sensor signals through jittering 
data augmentation (Extended Data Fig. 7). Although other temporal 
signal augmentation methods exist40, these methods altered the signal 
amplitude patterns and hindered the model from distinguishing dif-
ferent motions (Extended Data Fig. 7c–e and Methods). Originating 
from the same sensor signals, these two signals were considered as a 
strong positive pair since they represent the same motion. Second, we 
assigned consecutive augmented signals (distanced at most a half of 
the time window) as positive pairs. These consecutive time windows 
represent similar hand poses since our hand motions are continuous. 
Therefore, we assigned a connection strength between the signals 
based on their time differences and our model receives discounted 
positive rewards that are proportional to the connection strength 
for grouping consecutive sensor signals (Methods). A transformer 
encoder41 supported by the attention mechanism was adopted to 
encode long-term temporal signal patterns without iterative signal 
processing. Giving a tolerance for the model to map semantically 
similar sensor signals based on temporal correlation, the model could 
generate better quality features and showed stronger performances 
when it was transferred to different tasks. Extended Data Figs. 2 and 7a,b 
illustrate the experimental results of our model’s ability to distinguish 
different sensor signals even without any labels.

To investigate the model’s ability to extract useful motion features, 
we collected unlabelled random finger motions (bending and rotation) 
of the PIP, MCP and wrist motion signals through a single substrate-less 
nanomesh and then conveyed the information through the TD-C net-
work (Extended Data Fig. 1a and Methods). The joint signals of PIP, MCP 
and wrist are clearly represented in the uniform manifold approxima-
tion and projection (UMAP)42–46 (Extended Data Fig. 1b), illustrating the 
ability of the TD-C model to extract useful information from coupled 
signals. The signals of the combined motion of PIP and MCP joints were 
located in between the PIP-only and MCP-only motions, and therefore, 
our nanomesh sensor signals contain all three joint movements and 
can be used to effectively translate skin stretches into multijoint pro-
prioception. Moreover, to determine the use of resistive variations 
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between joints for complex tasks, we utilized these signals for actual 
motion prediction. As shown in Supplementary Fig. 21, our system was 
able to determine the position and bending angle of motion (bending 
and rotational), as well as multimodal movements.

The extracted motion features were then used for few-shot adap-
tation to arbitrary tasks. To overcome domain shift issues, we adopted 
a metric-based inference mechanism to predict users’ gestures in 
various daily tasks (Fig. 3b). The model was first fine-tuned to refine 
the MFS by additionally giving rewards for mapping the same-classed 
latent vectors to a closer feature space. The model performs maximum 
inner product search (MIPS) with a given few-shot labelled dataset to 
identify the current gesture. Comparing signals generated from the 
same user with the aid of the highly separable MFS, the model can 
avoid domain shift issues and utilize motion knowledge generated 
from TD-C learning. Details of the learning procedures are further 
described in Methods and those of the pseudocode are provided in 
Supplementary Fig. 17.

We note that in between two different gestures (active phase), 
there exists an intermediate period where users have no specific 
intention (inactive phase). Since inactive phases occur between active 
phases of motion, it is unavoidable for the model to project inactive 
phase signals near to active phase signals and considering temporal 
correlations (Fig. 3d). To avoid misclassification caused by neighbour-
ing inactive phases, we additionally train a phase block in transfer 
learning to clearly delineate the active and inactive phase of gestures 
(Supplementary Fig. 16). Specifically, input signals are regarded as 
active phase signals if the corresponding phase variables generated by 
the phase block are higher than a predefined threshold. Therefore, in 
actual testing time, we performed MIPS only between the active phase 
signals and few-shot demonstrations annotated as active phases. Our 
model with the phase block clearly separated these entangled phases, 
and ablation studies on adding the phase block are shown in Extended 
Data Fig. 5f. The user-wise few-shot labelled dataset and the corre-
sponding model predictions are illustrated in Fig. 3c. With transferable 

Random hand motions

Re
si

st
an

ce

Time (s)

Slided data

Data augmentation

Sensorimotor stage (meta-learning)

Sliding time window

Achieving meta-data

C
onnection strength

Positional embedding

x’i

x’i
xi

xt

xt+1

xt+k–1

xt+k x’’i

z’i

xk

xt

x2

x1

Se
ns

or
em

be
dd

in
g

Tr
an

sf
or

m
er

en
co

de
r 

M
LP

bl
oc

k
En

co
de

r

Po
si

tiv
e 

pa
irs

  
N

eg
at

iv
e 

pa
irs

Encoder
MFS

Fe
w

-s
ho

t
tr

an
sf

er
 le

ar
ni

ng
Re

al
-t

im
e

in
fe

re
nc

e

Fast adaptation of arbitrarytasks

Few-shot labelled set

En
co

di
ng

 m
od

el

Positional embedding

Se
ns

or
em

be
dd

in
g

Tr
an

sf
or

m
er

en
co

de
r

Ph
as

e
M

LP

MIPS

threshold

threshold

Active phase

Inactive
phase

1 2 k

Sim
ilarity

MFS

ba

c

User’s
imaginary keypad

Typing

Few trials Few-shot labelled dataset 

Few-shot 
transfer learning

Fe
w

-s
ho

t d
at

as
et

Ra
pi

d 
ad

ap
ta

tio
n

User 3

User 2

User 1

0 50 100

Accuracy (%)

U
se

r 1
U

se
r 2

U
se

r 3

Real-time sensor signal Correct Wrong

U
se

r 1
U

se
r 2

U
se

r 3

0

0 1,000 2,000 3,000

0

0.5

1.0

Ac
cu

ra
cy

Transfer training epoch

0

0.5

1.0
100 epoch

Acc > 0.8

d

e TD-C learning Supervised

Dim 16

32

1 s

1 s

1 s

1 s

2 s

2 s

∆R/R0

∆R/R0

∆R/R0

∆R/R0

∆R/R0

∆R/R0

1 2 3 4
5 6 7 8 9

1 2 3 4 5 6 7 8 9
15

10

5

0

–5

–5 0 5 10 15

Inactive phases

Phase 
separation

Dim 16

zk

zt

øk

ø3

øt

øt ≥

øt <

ø2

ø1

z2

z1

z3

ak

a2

a1

z’’i

z’i

Fig. 3 | TD-C learning principle and experimental results on learning 
performance. a, Sensor signal processing and unsupervised TD-C learning for 
learning the MFS. b, Transfer learning and metric-based real-time inference 
mechanism with provided few-shot labelled dataset gathered from each arbitrary 
user. Dim 16 and MIPS stand for dimension of 16 and maximum inner product 
search, respectively. c, Few-shot dataset and real-time sensor signal prediction 

for different users typing nine different keys. d, UMAP projection of latent 
numpad typing vectors, where the grey dots indicate inactive phase signals and 
coloured dots indicate active phase signals. e, Inference accuracy trends for nine-
class numpad typing with further transfer training epochs: model pretrained 
with TD-C learning (blue line) and the same model with last linear layer 
modification for classification pretrained with supervised learning (red line).

http://www.nature.com/natureelectronics


Nature Electronics | Volume 6 | January 2023 | 64–75 69

Article https://doi.org/10.1038/s41928-022-00888-7

MFS and user-wise metric-based inference, our model can robustly 
predict hand actions from different users. In addition, our learning 
framework can handle variations in nanomesh density (Supplemen-
tary Fig. 18). Our model’s ability to transfer knowledge to users with 
newly printed sensors compared with a traditional supervised learning 
framework was demonstrated in Fig. 3e. Although the model trained 
with supervised learning methods required more than 3,000 training 
epochs to adapt to the new user, the model trained with our developed 
learning framework showed more than 80% accuracy within 20 transfer 
training epochs. Extended Data Fig. 5d illustrates the UMAP projection 

of embedded signal vectors in MFS into a two-dimensional space where 
feature vectors were discriminated into correlated feature spaces.

Fast adaptation to arbitrary tasks
Having demonstrated the ability of our learning framework to use 
unlabelled random motion data to learn MFS and make gesture infer-
ence for arbitrary users with few-shot demonstrations, several rep-
resentative daily tasks were subsequently conducted, which include 
command signal recognition, one-handed numpad typing (Fig. 4b), 
two-handed sentence typing (Fig. 4c) and object recognition (Fig. 4d). 
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Fig. 4 | Demonstration of fast adaptation to various daily tasks. a, Illustration 
of the general process of nanomesh printing, wireless device attachment,  
few-shot inference and prediction. b, Command signal prediction and virtual 
keypad typing recognition. Four command signals are initially provided only 
for lateral hand motions. The model can further be generalized to predict both 
lateral and vertical hand motions as the user provides more demonstration on 
vertical hand signals. c, Two-handed QWERTY keyboard typing recognition 

with nanomesh printed on both hands. The predicted letters appear on the user 
interface as a user consecutively types various sentences. The acrylic keyboard 
identifier is placed beneath to show the intention of the user (Supplementary  
Fig. 20). d, Group of recognition objects and UMAP projection of embedded 
vectors for signals in a few-shot demonstration set. The sequential changes of 
position in the projected embedding space of real-time user signals as the user 
starts to interact with an object.
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These applications demonstrate the potential of using our system in 
daily life, including applications such as human motion recognition, 
human device interactions and human object interactions. For each 
individual task, the user first printed the sensor by applying 16 cycles 
of nanomesh printing through the portable printing machine (Fig. 
4a). A wireless module was then attached to the two terminals of the 
nanomesh. The user then provided a few-shot labelled dataset by 
performing each individual gesture five times. The generated sensor 
signals and the corresponding labels were transmitted to the receiver 
by the module. For grouping of the latent feature vectors based on a 
given task-specific dataset, we further trained the model for additional 
20 transfer training epochs by providing positive rewards for mapping 
the same gestures into closer vectors.

We observed that our model can efficiently adapt to identify new 
gestures added to our few-shot labelled dataset without requiring any 
modifications to model structures or intensive training processes. 
Even though initially trained only for lateral finger motions, our model 
can be further enhanced to recognize vertical motions by further 
providing corresponding few-shot labels. After initial training for 
left- and right-hand gestures, our model could then recognize gestures 
for all directions (left, right, up and down) by additionally providing 
up- and down-hand gesture signals into the initially trained model  
(Fig. 4b and Supplementary Video 1). Furthermore, our model was able 
to distinguish fast and subtle movements of finger motions that move 
along the user’s small imaginary keypad by discriminating between 
nine different numpad keys (Supplementary Video 2). Our model 
achieved 85% accuracy within 20 transfer epochs (Extended Data 
Fig. 5c). We used the numpad typing task as a major benchmark for 
comparing our methods with others, since it consists of nine classes of 
similar hand postures. To analyse the transfer capability of the training 
framework to the opposite hand, an additional sensor was printed on 
the left hand, allowing the user to type with two hands on the entire 
QWERTY keyboard (Fig. 4c). When given a sentence, an arbitrary 
user initially provided few-shot labels by typing each character five 
times. The pretrained model was further transferred to two different 
models to discriminate between the two-handed keyboard typing 
signals (Supplementary Fig. 19) of typed sentences, namely, ‘Hello 
World’ and ‘Imagination’ (Supplementary Video 3). Moreover, it also 
can be directly applied to predicted longer sentences, such as ‘No 
legacy is so rich as honesty’ (William Shakespeare) and ‘I am the mas-
ter of my fate I am the captain of my soul’ (Invictus) (Supplementary  
Video 4). Minor typos may occur when typing longer sentences and 
can be readily modified through open-source word correction librar-
ies for further practical usage (Supplementary Fig. 25). The above 
keyboard application demonstrated that our inference mechanism 
can accurately deal with asynchronously generated multiple sensor 
signals to decode wide finger motion ranging from the left and right 
ends of the keyboard. The full keyboard of the alphabet was predict-
able (Extended Data Fig. 8), where each hand took charge of the left 
half and right half of the keyboard.

In the same way as humans identify objects through gestural 
information during interactions1, users with the nanomesh could con-
tinuously rub the surface of different objects and eventually recognize 
them. The sphere diagram (Fig. 4d) illustrates the UMAP projections 
of embedded labelled dataset onto the contour of a sphere, where 
different colours represent six different objects. Since the shape of 
the pyramid and cone are similar and thus hard to distinguish from 
each other, the corresponding embedded points (Fig. 4d, yellow and 
purple) were initially intermixed together. As a result, although the 
hand interacted with a pyramid, the model initially predicted a cone. 
Continuously rubbing twice allowed the model to eventually predict 
it as a pyramid. The embedded vectors continuously move from the 
yellow region to the boundary and then to the purple region (Fig. 4d). 
This is akin to humans taking time to recognize objects, and altering 
their minds during interactions with various sections of the object. 

The model can classify the objects with 82.1% accuracy via 20 transfer 
epochs versus thousands of epochs using a supervised training method 
(Extended Data Figs. 4 and 5b and Supplementary Video 5).

Conclusions
We have reported a substrate-less nanomesh artificial mechanorecep-
tor equipped with meta-learning. The system mimics human sensory 
intelligence and exhibits high efficacy and rapid adaptation to a variety 
of human tasks. Similar to cutaneous receptors recognizing motion 
via skin elongation, our nanomesh receptor gathers hand propriocep-
tion signal patterns with a single sensing element. The substrate-less 
feature of the nanomesh receptor allows intricate signal patterns 
to be collected from many areas using a single sensor. With a highly 
separable MFS, our learning framework can effectively learn to dis-
tinguish different signals, and this knowledge can be used to robustly 
predict different user tasks with the aid of a metric-based inference 
mechanism. The robustness of our model allows quick adaptation to 
multiple users regardless of variations in density for printed nanomesh 
receptors. It is expected that increasing the number of nanomesh 
elements to five fingers or more will enable the recognition of more 
complex motions, allowing future applications in robotics, metaverse 
technologies and prosthetics.

Methods
Software and system design of wireless measuring module
The device consists of a miniaturized flexible printed circuit board that 
includes an analogue-to-digital converter sensing element, Bluetooth 
low-energy module, lithium polymer battery and anisotropic flexible 
connector (Extended Data Fig. 1). An embedded nanowire network at 
the end of the connector allows conformal and direct contact with the 
existing nanomesh electronics. The two terminals of the nanomesh are 
connected to the wireless module via direct contact with the embed-
ded nanowire network; then, the translated digital signals from a volt-
age divider are further conveyed to the receiver through Bluetooth 
transmission at a data rate of 30 Hz. The compact wireless module can 
measure arbitrary hand motions and maintain conformal contact with 
the printed nanomesh. The wireless system is programmed through a 
system on chip (CC2650, Texas Instruments) with the Code Composer 
Studio software (version 9.3.0, Texas Instruments). The packet of the 
measured analogue sensor signals is transferred at a data rate of 30 Hz, 
where the receiving system on chip transforms the received packets 
into a universal asynchronous receiver-transmitter (UART) data trans-
mission. A Python-integrated LabVIEW (version 3.6.8) system transfers 
these data into the learning network for task identification.

Mechanical simulation of substrate-less nanomesh
Strain distribution of traditional substrate-based and our substrate-less 
electronics is compared through the finite element method (version 
5.6, COMSOL Multiphysics). The depth and width of the wrinkles are 
set as 500 and 200 μm, respectively. A thin layer (6 μm, measured by 
Bruker Dektak XT-A; Supplementary Fig. 22) of PU material (Alberd-
ingk) is applied above the wrinkle to investigate the strain distribution 
of substrate-based electronics.

Portable printing system
The linear stage and nozzle are moved by the Nema 11 stepping motor, 
controlled by an L298N controlling driver (Supplementary Fig. 14). The 
spray nozzle (air-atomizing nozzles, Spraying Systems) is connected 
to 20 psi air pressure through a compact air compressor (Falcon Power 
Tools). The nozzle is controlled via a 5 V activated solenoid gas valve, 
and the entire nozzle is moved through the linear stage with 20 mm s–1 
speed. A 5 mg ml–1 of Ag–Au nanomesh solution is prepared and sprayed 
for 16 cycles over the entire hand covered with a polydimethylsiloxane 
stencil mask. Then, three cycles of diluted (25 mg ml–1) water-based PU 
(U4101, Alberdingk) were spray coated.
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Biocompatible Ag@Au core–shell nanomesh synthesis
First, Ag nanowires (length, ~80 μm; diameter, ~80 nm) were synthe-
sized by a modified one-pot polyol process. In 50 ml of ethylene glycol, 
0.4 g of polyvinylpyrrolidone (Mw, ~360,000) and 0.5 g of silver nitrate 
were sequentially dissolved using a magnetic stirrer. Then, 600 μl FeCl3 
(2 mM) was rapidly injected into the mixture and stirred mildly. The 
stirrer was carefully removed from the mixture solution once all the 
chemicals were thoroughly mixed. Finally, the mixture solution was 
immersed in a preheated silicone oil bath (130 °C). After 3 h of nanowire 
growth, the resultant solution was cleaned using acetone and ethanol 
to remove the chemical residues along with centrifugation at 1,500×g 
for 10 min for three times. The purified Ag nanowires were redispersed 
in water for use. For preparation of the Au precursor solution, 30 mg 
chloroauric acid (formula weight, 339.79; Sigma-Aldrich), 17 mg sodium 
hydroxide (Samchun Chemicals) were dissolved in 70 ml distilled 
water. After 30 min, the hue of the solution turned from yellowish to 
transparent, and 33 mg sodium sulfite (Sigma-Aldrich) was added to 
the solution. For the Ag nanowires preparation solution, 800 mg of 
poly(vinylprrolidone) (Mw, 55,000; Sigma-Aldrich), 70 mg sodium 
hydroxide, 300 mg l-ascorbic acid (Samchun Chemicals) and 10 mg 
sodium sulfite were added to 100 ml of the previously synthesized Ag 
nanowire solution (Ag, 20 mg). Thereupon, the Au precursor solution 
was slowly poured into the Ag nanowire preparation solution for 2 min. 
After 30 min, the Ag@Au core–shell nanowires were fully synthesized 
and cleansed for three times through centrifugation and dispersed 
into water with 10 mg ml–1 concentration and sprayed for nanomesh 
formation (Supplementary Fig. 23).

Nanomesh breathability measurement
The measurement was conducted using a custom-built acrylic air 
channel (Supplementary Fig. 8). An air pump was built at the back end 
of the air channel to create a consistent airflow, and the nanomesh was 
installed in the centre. The flow rate and pressure drop between the 
nanomesh were monitored via a flow meter and differential manom-
eter. The pressure drop is measured at varying flow rates, and the air 
permeability of different samples is calculated through Darcy’s law 
(q = − kΔP

μL
, where q, k, P, μ and L denote the flux, permeability, pressure, 

viscosity and channel length, respectively).

Cell toxicity
Cell toxicity is compared between the control, only PU, Ag nanomesh 
with PU and Ag@Au nanomesh with PU. L929 (KCLB), a mouse fibroblast 
cell, was cultured in Dulbecco’s modified Eagle’s medium (11885-084, 
Thermo Fisher Scientific) containing 10% foetal bovine serum (F2442, 
Sigma-Aldrich) and Anti–Anti (15240-062, Thermo Fisher Scientific) at 
37 °C with 5% CO2. Nanomeshes with different conditions (PU, Ag with 
PU and Ag–Au with PU) were prepared and used for in vitro toxicity 
evaluation. After attaching the sample to the bottom in a 1/10 size of the 
well area, 5 × 105 cells per well were seeded on the six-well culture plate 
(3516; Costar). After incubation for 24 h, cell morphological changes 
were observed and photographed using a Nikon Eclipse TS100 micro-
scope. To analyse the toxicity of cells, an MTT assay was performed using 
three wells for each sample. The cells were incubated in 0.5 mg ml–1 
MTT solution (M6494, Thermo Fisher Scientific) at 37 °C for 1 h; then, 
the solution was removed and dimethyl sulfoxide was used to dissolve 
MTT formazan. The absorbance was measured at an optical density of 
540 nm using an Epoch Microplate spectrometer (BioTek Instruments) 
and normalized using a control (unpaired, two-tailed Student’s t-test).

In vivo test (spraying)
Four-week-old Hos:HR-1 male mice were purchased from Central Labora-
tory Animal for spraying. All the experiments involving mice were per-
formed with the approval of the Konkuk University Institutional Animal 
Care and Use Committee (KU21212). All the animals were maintained in 

a 12 h light/dark cycle at 23 ± 1 °C and 50 ± 10% relative humidity with 
free access to food and water. Hos:HR-1 mice were anaesthetized by 
intraperitoneal administration of alfaxalone (100 mg kg–1) and xylazine 
(10 mg kg–1). After placing the anaesthetized mouse under the portable 
printing system, the nanomesh solution was sprayed. A surgical cloth 
with a window of about 1 × 4 cm2 was covered so that the nanomesh could 
be applied only to the exposed area. To maintain the body temperature, 
a heating pad or an infrared lamp was used. After application, the mice 
were returned to the cage for recovery; 24 h later, CO2 euthanasia was 
performed to obtain the skin sample. Fixed skin samples were dehy-
drated (70%, 80%, 90% and 100% ethanol), transferred to xylene for 2 h 
incubation and infiltrated with paraffin. Paraffin blocks were prepared 
using a Tissue-Tek TEC5 tissue-embedding console system (Sakura Fine-
tek Japan), and sectioned using the Microm HM 340E microtome (Ther-
moScientific) at a thickness of 5 μm. Subdermal implant of the Ag–Au 
nanomesh is also carried out within seven days (Supplementary Fig. 6).  
The tissue slices were placed on a glass slide (Marienfeld) and stained 
with haematoxylin and eosin. The slides were photographed using an 
Olympus IX70 fluorescence microscope and a Nikon D2X instrument.

Graph analysis of nanomesh network
Graph theory is used to analyse the electrical properties of the nano-
mesh network (Supplementary Fig. 5). First, the adjacent matrix (A) is 
formed from the distributed random nanomesh network (a random 
nanowire (length, 100 μm) network is distributed in 500 × 500 μm2). 
Then, the incidence matrix (I) is formed to generate the graph network 
of the nanomesh, where the edge and node represents nanowires and 
intersections, respectively. According to Ohm’s law, the current flow in 
each wire can be calculated by i = CIx, where C is the conductivity and 
Ix represents the voltage difference of the nodes (x is the node matrix). 
Then, the current of each node can be expressed by ITCIx following 
Kirchhoff’s law. Therefore, the voltage and current of the network can 
be related by Laplacian matrix L = LCIT, with the relationship of Vi = L. 
Voltage and total resistance of the nanomesh can be derived using the 
boundary conditions of the input and output current flow of both ends 
of the edge (i(o) = 1, i(N) = −1). The resistance of the network under 20% 
strain and the sensitivity of the nanomesh under 15% strain are derived 
from averaging 100 simulation runs for each segment. The percolation 
threshold is found at six cycles of spraying, where the network density 
can be derived as 180#/500 μm. Therefore, the approximate nanomesh 
density per spraying cycle can be obtained.

Gesture recognition experiments
The nanomesh was applied with 16 cycles of spraying (linear stage with 
20 mm s–1 speed and 10 mg ml–1 of Ag–Au nanomesh solution). Then, the 
wireless module is attached to the terminal of the nanomesh and three 
users are asked to perform data collections for three times for each appli-
cation (total, 10 min). Each few-shot data collection lasted around 1 min 
(~1,800 data points), with 30 s of rest before the next trial. The data are 
saved to check whether they are effectively collected, and the adaptation 
performance is evaluated. This process took less than 5 min (the achieved 
raw data are shown in Supplementary Fig. 24). All the experiments were 
performed in strict compliance with the guidelines of the Institutional 
Review Board at Seoul National University (project title, Electrophysiologi-
cal signal sensing by direct-printed electronic skin; IRB no. 2103/001-008). 
Informed consent was obtained from all the participants.

Dataset acquisition methods
Previous studies on gesture classification from sensor signals have 
focused on model prediction accuracies with a designed experimental 
setup where the users are instructed to perform a specific task having 
a fixed number of classes. Our model framework is designed to learn 
transferable information from unlabelled motion data of a limited 
number of users and be generalized to various daily tasks with only a 
few labelled sets given as guidance. Our general objective here is to 
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verify the ability of pretrained models to adapt to various daily tasks 
and compare their ability to create a normal supervised learning frame-
work. There are three different types of dataset that are used in our 
experiment: pretrained dataset Xpretrain = {si}, few-shot labelled dataset 
Xuser_ jtrain = {xk,ak}  for task adoption and task-wise testing dataset 
Xuser_ jtest = {xk}. The pretrained dataset is used when pretraining our  
models and it is generated from random motions (900 s of random 
finger movements). The models that are used for task-wise adaptation 
(Supplementary Videos 1–7) are trained with unlabelled data that are 
collected from three users performing random hand motions when 
skin sensors are printed on their fingers. To quantitatively compare 
our training framework to a normal supervised learning framework, 
we additionally collected a labelled dataset as a user types the keyboard 
numpad. The keyboard inputs are regarded as data labels and we use 
these labels for the supervised pretrained model. Quantitative com-
parisons between our framework and supervised pretrained frame-
works are based on the pretrained model using the numpad typing 
dataset, whereas labels are only used for supervised learning frame-
work. We prepared four different applications, each representing 
real-life hand computer interaction cases (Fig. 4c–e). For each applica-
tion, we collected a five-shot labelled dataset for transfer learning our 
model. In terms of the five-shot dataset, it means a user performs each 
gesture class for five times, for example, in the object interaction task, 
rubbing an object from the left end to the right end would be regarded 
as a single shot. The corresponding gesture labels are collected as the 
user is typing the keyboard keys that represents specific gesture labels. 
The collected few-shot labelled dataset is then used for retraining the 
data-embedding model. For reflecting real-life usage scenarios, the 
task-wise testing dataset is collected as a user naturally interacts with 
the system, for example, typing different numpad keys or rubbing 
random objects after retraining the model.

Details of signal preprocessing and data augmentation
To limit the sensor input domain, the sensor values are normalized 
through minmax normalization. The minimum and maximum values 
among each individual pretrained dataset and few-shot labelled dataset 
are used to normalize the corresponding dataset. For real-time user test 
scenarios, the user signal inputs are normalized based on the minimum 
and maximum values of a given user labelled dataset. Given a signal 
group collected for the same user R = {ri, i ∈ N}, the corresponding 
normalized signal group S = {si ∈ [0, 1], i ∈ N} is generated as

si =
ri −min(R)

max (R) −min(R) , ∀ri ∈ ℛ.

The sensor signals are collected at 30 fps and signal st represents 
the normalized sensor signal collected in time frame t ∈ N (st and st+1 
are 1/30 s apart). Consecutive 32 sensor signals are grouped into a 
single model input, so that the model can utilize not only the cur-
rent sensor signal but also the temporal signal patterns to generate 
signal embeddings. A sliding time window of size 32 with stride 1 is 
used to group consecutive raw signal inputs to generate model inputs 
(xt = [st–31, st–30,…,st–1, st]).

Two different types of signal data augmentation are used for 
unique purposes and generating MFSs. First, signal jittering is used to 
generate strong positive pairs for contrastively training our learning 
model. Given an input signal sequence xt, a strong pair [x′t, x′t′] is gener-
ated as follows:

x′t = [s′t−31, s
′
t−30,… , s′t−1, s

′
t] ,where s′i = si + z

′
i , z

′
i ≈ N (0,0.1) ,

x′′t = [s′′t−31, s
′′
t−30,… , s′′t−1, s

′′
t ],where s′′i = si + z

′′
i , z

′′
i ≈ N(0,0.1).

Generated from the same input signal, the strong pair [x′i , x
′
i ′] will 

be regarded as positive pairs having positive strength of size 1. When 

generating a strong positive pair with data augmentation, we need to 
carefully choose which data augmentations are used. We further 
demonstrate the experimental results on task transfer accuracy for 
different types of data temporal signal augmentation methods 
(Extended Data Fig. 7).

Although out-of-distribution issues are mitigated with data 
normalization that bounds input signal domains, we further use 
data-shifting augmentations to mitigate signal differences between 
different users and printed sensors. Given an input signal sequence xt, 
another input signal sequence xτ is generated as follows.

xτ = {
xt + z, z ≈ U [0.3,0.5] for max (xt) < 0.5

xt − z, z ≈ U [0.3,0.5] for min (xt) ≥ 0.5

Unlike signals generated by jittering, which were regarded as 
positive pairs representing the same hand motions, we regard shifted 
signals as a completely new input. Since the amplitude of a sensor 
signal is correlated with the amount of sensor deformation, shifting 
signals in the y axis would result in new signal patterns representing 
different hand motions. At the same time, the model can learn how 
to embed sensor signals positioned in various input domains. This is 
the conventional way of data augmentation that is used to increase 
the amount of training datasets by providing more training examples.

Details of attention mechanism in a transformer encoding block
Given a signal input sequence with a size of 32, xt ∈ [0, 1], the model first 
embeds the sensor signals into high-dimensional vectors xenct ∈ R32×32 
with a sensor embedding block, fenc, consisting of a single linear layer:

xenct = [vt−31, vt−30,… , vt−1, vt] , vi = fenc(si) ∈ ℝ32, ∀i ∈ [t − 31, t].

Before encoding the signals into an MFS with attention mecha-
nism, we add positional embedding to the embedded vectors so that 
the model can understand the relative position of input sequences 
and encoding them in parallel. Positional embedding is one of the key 
features of transformer architecture41, which allows the model to avoid 
iterative computation for each time frame. The position-encoded input 
vector x_enc_post is generated as follows:

xencpost = xenct + pos = [vpost−31, v
pos
t−30,… , vpost−1 , v

pos
t ]

= [vt−31, vt−30,… , vt−1, vt] + [pos1,pos1,… ,poswindowsize ],

posi ∶= {
sin (ωk, t) , if i = 2k

cos (ωk, t) , if i = 2k + 1
,ωk =

1
10,0002k/32

.

This allows unique positional vectors to be added to different 
positions in a time window (Extended Data Fig. 6b).

Entire signal windows are encoded into latent vectors by using the 
transformer encoding layers that utilize multihead attention blocks. 
Given an embedded vector x_enc_post ∈ R32×32 consisting of 32 vec-
tors representing sensor signals for each time frame, the model first 
encodes the vector into three representative vectors called query, keyt 
and valuet. For each query, the model compares its values with other 
keys to generate attention weights, and these weights are multiplied 
by their values to generate embedded vectors that have referred to 
entire time-window signals. This can be computed in parallel by matrix 
multiplication, which massively increases the model’s encoding speed 
for sequential signals.

querytij = Wqj (v
pos
i ) , keytij = Wkj (v

pos
i ) , valuetij = Wvj (v

pos
i ) ,

i ∈ [t − 31, t] , j ∈ [0, 3]

where W ∈ R32×(n_head×32) indicates linear layers that project the embed-
ded vector vposi  into multiple triplet heads comprising query, key and 
value. We note that instead of generating a single triplet (query, key 

http://www.nature.com/natureelectronics


Nature Electronics | Volume 6 | January 2023 | 64–75 73

Article https://doi.org/10.1038/s41928-022-00888-7

and value) for each embedded vector vposi , we generate multiple (query, 
key and value) triplets that are called heads. Utilizing the ability to easily 
compute attention in parallel, the model is designed to simultaneously 
generate multiple attentions. In this work, we generated four heads in 
parallel, which is half the number of heads compared with the original 
language model for fast real-time computation.

Given the query and key value heads, namely, querytij and keytkj, 
respectively, the model first computes attention as follows:

attnikj = softmax (
querytij
√32

× keyTtkj) , i ∈ [t − 31, t] , j ∈ [0, 3] .

The generated attention vectors contain weights that determine 
the amount of information that the model gathers from different 
values. Therefore, for each time-frame vector, the model generates 
output vectors as

otikj = attnikj × valuetkj .

Therefore, the output vectors for the jth head are computed as

ot = [oti , ∀i ∈ [t − 31, t]] ,

where

oti = concat (∑
t
k=t−31 otikj , ∀j ∈ [0, 3]) .

We repeat the above multihead attention mechanism three times. 
Through stacked attention blocks, the model can encode temporal 
signal patterns by learning how to extract useful information from 
sequential signal inputs without iteratively processing every time frame.

After encoding temporal signal patterns, we further project output 
vectors with a position-wise feedforward layer. The projected vectors 
are concatenated to generate a latent vector representing the entire 
signal sequence as below:

qt = concat (Wioti + oti , ∀i ∈ [t − 31, t]) .

This is a linear block applied to each time-frame output with a 
residual connection. Using integrated representation qt, the model 
generates motion-feature vector and phase variables as below:

zt = fz(qt), zt ∈ ℝ16,

∅t = softmax (sigmoid (f∅(qt))) , ∅t ∈ ℝ2,

where fz and f∅ are two separate three-layered linear blocks with a Leaky 
ReLU activation function between the linear layers. At the end of the 
phase block, we apply the sigmoid function and softmax function so 
that the phase variables express the binary state of the input signal 
(active and inactive phases). We note that the phase block is not trained 
and used in the pretraining stage.

Structure and implementation of temporal augmentation 
contrastive feature learning
Given the latent motion feature vectors Z = {zi} encoded by the model, 
we apply timely discounted contrastive loss, which is a generalization 
of InfoNCE38 by applying guided tolerance for mapping semantically 
similar signals to a closer space. For each latent motion feature vector, 
we have a time variable t that indicates the time that corresponding 
sensor signals are collected. Based on the time distance between two 
different latent features vectors, we subdivide them into positive pairs 
Z+ and negative pairs Z− as follows:

{
(zi, zj) ∈ Z+, if ||ti − tj|| ≤ Dw/τ

(zi, zj) ∈ Z−, if ||ti − tj|| > Dw/τ
,

where τ is a hyperparameter that determines the tolerance distance 
and Dw is the window size for the sliding time window.

We note that the latent motion features generated from the same 
motion signals through data augmentation would have zero distance 
since the time labels are the same. For each positive pair, we assign a time 
discount factor based on the distance between the two vectors as below.

TDij = exp (−α ||ti − tj||
2)

Here α is a hyperparameter that determines the discount rate; in 
this work, we set it as 4. Therefore, applying the time discount factor, 
we can get a new loss function as below:

TDC_Loss(Z) =

−𝔼𝔼i.j,st(zi ,zj)∈Z+ [log
TDij×exp(

cossim(zi ,zj )

temp
)

∑p∈Z+ TDij×exp(
cossim(p)
temp

)+∑p∈Z− exp(
cossim(p)
temp

)
] ,

where temp refers to the temperature and it is set as 0.07. By giving 
a time discount factor and extending the boundary of positive pairs 
for signals correlated with their measurement time, we can avoid the 
model from pushing semantically similar signals apart.

Details of transfer learning with few-shot labelled set
For each task, such as keyboard typing or object recognition, we 
fine-tune the pretrained models with a few-shot labelled dataset given 
by a specific user. In transfer learning, we aim to further refine our MFS 
for more clearly discriminating the task gestures and simultaneously 
training the phase block so that the model can distinguish active and 
inactive phases for the current user.

Therefore, given a few-shot labelled dataset Xusertrain = {xk,ak, tk}, the 
model first encodes each signal input to MFS to form the labelled set 
Zusertrain = {zk, ∅k,ak, tk}, where zk is the encoded latent motion feature vector 
of xk and ∅k is a predicted phase variable. The gesture label ak represents 
one of the action gestures; in particular, 0 action would indicate the inac-
tive phase where the user is not intending to perform any of the gestures 
in the task. Therefore, we additionally generate the phase label as

{
ak∅ = 0, ifak = 0

ak∅ = 1, ifak ≠ 0

The model is then fine-tuned with the loss function stated below:

Loss (Zusertrain) = TDCLoss ({zk}) + αNCELoss ({zk,ak}) + βBCELoss ({∅k,ak∅}) ,

where NCELoss indicates InfoNCE38 where we regard signals with the 
same labels as positive pairs, and BCELoss is a binary cross-entropy 
loss. Hyperparameters α and β are assigned for controlling the ratio 
between different loss values.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
The collected finger datasets for various daily tasks performed in 
this study are available via GitHub at https://github.com/meta-skin/
metaskin_natelec. Further data that support the plots within this paper 
and other findings of this study are available from the corresponding 
authors upon reasonable request.

Code availability
The source code used for TD-C learning, rapid adaptation and 
results are available via GitHub at https://github.com/meta-skin/
metaskin_natelec.

http://www.nature.com/natureelectronics
https://github.com/meta-skin/metaskin_natelec
https://github.com/meta-skin/metaskin_natelec
https://github.com/meta-skin/metaskin_natelec
https://github.com/meta-skin/metaskin_natelec


Nature Electronics | Volume 6 | January 2023 | 64–75 74

Article https://doi.org/10.1038/s41928-022-00888-7

References
1.	 Bergquist, T. et al. Interactive object recognition using 

proprioceptive feedback. In Proc. 2009 IROS Workshop: Semantic 
Perception for Robot Manipulation, St. Louis, MO (2009).

2.	 Emmorey, K., Bosworth, R. & Kraljic, T. Visual feedback and self- 
monitoring of sign language. J. Mem. Lang. 61, 398–411 (2009).

3.	 Proske, U. & Gandevia, S. C. The proprioceptive senses: their 
roles in signaling body shape, body position and movement, and 
muscle force. Physiol. Rev. 92, 1651 (2012).

4.	 Piaget, J. & Cook, M. T. The Origins of Intelligence in Children  
(WW Norton, 1952).

5.	 Edin, B. B. Cutaneous afferents provide information about knee 
joint movements in humans. J. Physiol. 531, 289–297 (2001).

6.	 Collins, D. F., Refshauge, K. M. & Gandevia, S. C. Sensory 
integration in the perception of movements at the human 
metacarpophalangeal joint. J. Physiol. 529, 505–515 (2000).

7.	 Edin, B. B. & Abbs, J. H. Finger movement responses of cutaneous 
mechanoreceptors in the dorsal skin of the human hand.  
J. Neurophysiol. 65, 657–670 (1991).

8.	 Liu, Y., Jiang, W., Bi, Y. & Wei, K. Sensorimotor knowledge from 
task-irrelevant feedback contributes to motor learning.  
J. Neurophysiol. 126, 723–735 (2021).

9.	 Hadders-Algra, M. Early human motor development: from 
variation to the ability to vary and adapt. Neurosci. Biobehav. Rev. 
90, 411–427 (2018).

10.	 Altmann, G. T. & Dienes, Z. Rule learning by seven-month-old 
infants and neural networks. Science 284, 875–875 (1999).

11.	 Wang, J. X. Meta-learning in natural and artificial intelligence. 
Curr. Opin. Behav. Sci. 38, 90–95 (2021).

12.	 Sundaram, S. et al. Learning the signatures of the human grasp 
using a scalable tactile glove. Nature 569, 698–702 (2019).

13.	 Luo, Y. et al. Learning human–environment interactions using 
conformal tactile textiles. Nat. Electron. 4, 193–201 (2021).

14.	 Chun, S. et al. An artificial neural tactile sensing system. Nat. 
Electron. 4, 429–438 (2021).

15.	 Caesarendra, W., Tjahjowidodo, T., Nico, Y., Wahyudati, S. & 
Nurhasanah, L. EMG finger movement classification based on 
ANFIS. J. Phys. Conf. Ser. 1007, 012005 (2018).

16.	 Zhou, Z. et al. Sign-to-speech translation using machine-learning- 
assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020).

17.	 Moin, A. et al. A wearable biosensing system with in-sensor 
adaptive machine learning for hand gesture recognition. Nat. 
Electron. 4, 54–63 (2021).

18.	 Kim, K. K. et al. A deep-learned skin sensor decoding the 
epicentral human motions. Nat. Commun. 11, 2149 (2020).

19.	 Yan, Y. et al. Soft magnetic skin for super-resolution tactile sensing 
with force self-decoupling. Sci. Robot. 6, eabc8801 (2021).

20.	 You, I. et al. Artificial multimodal receptors based on ion 
relaxation dynamics. Science 370, 961–965 (2020).

21.	 Kaltenbrunner, M. et al. An ultra-lightweight design for 
imperceptible plastic electronics. Nature 499, 458–463 (2013).

22.	 Tang, L., Shang, J. & Jiang, X. Multilayered electronic transfer 
tattoo that can enable the crease amplification effect. Sci. Adv. 7, 
eabe3778 (2021).

23.	 Araromi, O. A. et al. Ultra-sensitive and resilient compliant 
strain gauges for soft machines. Nature 587, 219–224 (2020).

24.	 Miyamoto, A. et al. Inflammation-free, gas-permeable, 
lightweight, stretchable on-skin electronics with nanomeshes. 
Nat. Nanotechnol. 12, 907–913 (2017).

25.	 Lee, S. et al. Nanomesh pressure sensor for monitoring finger 
manipulation without sensory interference. Science 370, 
966–970 (2020).

26.	 Wang, Y. et al. A durable nanomesh on-skin strain gauge for 
natural skin motion monitoring with minimum mechanical 
constraints. Sci. Adv. 6, eabb7043 (2020).

27.	 Hendrycks, D. & Gimpel, K. A baseline for detecting misclassified 
and out-of-distribution examples in neural networks. In Proc. Int. 
Conf. Learning Representations (ICLR, 2017).

28.	 Shimodaira, H. Improving predictive inference under covariate 
shift by weighting the log-likelihood function. J. Stat. Plan. 
Inference 90, 227–244 (2000).

29.	 Choi, S. et al. Highly conductive, stretchable and biocompatible 
Ag–Au core–sheath nanowire composite for wearable  
and implantable bioelectronics. Nat. Nanotechnol. 13,  
1048–1056 (2018).

30.	 Kim, K. K. et al. Highly sensitive and stretchable 
multidimensional strain sensor with prestrained anisotropic 
metal nanowire percolation networks. Nano Lett. 15,  
5240–5247 (2015).

31.	 Ershad, F. et al. Ultra-conformal drawn-on-skin electronics for 
multifunctional motion artifact-free sensing and point-of-care 
treatment. Nat. Commun. 11, 3823 (2020).

32.	 Radford, A., Narasimhan, K., Salimans, T. & Sutskever, I.  
Improving language understanding by generative pre-training. 
OpenAI Blog (2018).

33.	 Radford, A. et al. Language models are unsupervised multitask 
learners. OpenAI Blog (2019).

34.	 Wu, Z., Xiong, Y., Yu, S. X. & Lin, D. Unsupervised feature 
learning via non-parametric instance discrimination. In Proc. 
IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR) 3733–3742 (IEEE, 2018).

35.	 Hjelm, R. D. et al. Learning deep representations by mutual 
information estimation and maximization. In Proc. Int. Conf. 
Learning Representations (ICLR) (2019).

36.	 Kim, D., Kim, M., Kwon, J., Park, Y.-L. & Jo, S. Semi-supervised gait 
generation with two microfluidic soft sensors. IEEE Robot. Autom. 
Lett. 4, 2501–2507 (2019).

37.	 He, K., Fan, H., Wu, Y., Xie, S. & Girshick, R. Momentum contrast 
for unsupervised visual representation learning. In Proc. IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR) 
9729–9738 (IEEE, 2020).

38.	 Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple 
framework for contrastive learning of visual representations. 
In Proc. 37th International Conference on Machine Learning 
1597–1607 (PMLR, 2020).

39.	 Spelke, E. S., Katz, G., Purcell, S. E., Ehrlich, S. M. & Breinlinger, 
K. Early knowledge of object motion: continuity and inertia. 
Cognition 51, 131–176 (1994).

40.	 Iwana, B. K. & Uchida, S. Time series data augmentation for neural 
networks by time warping with a discriminative teacher. In 2020 
25th International Conference on Pattern Recognition (ICPR) 
3558–3565 (IEEE, 2020).

41.	 Vaswani, A. et al. Attention is all you need. In Advances in  
Neural Information Processing Systems 5998–6008  
(Curran Associates, 2017).

42.	 McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform 
manifold approximation and projection. J. Open Source Softw. 3, 
861 (2018).

43.	 Mahmood, M. et al. Fully portable and wireless universal brain–
machine interfaces enabled by flexible scalp electronics and 
deep learning algorithm. Nat. Mach. Intell 1, 412–422 (2019).

44.	 Kim, D., Kwon, J., Han, S., Park, Y. L. & Jo, S. Deep full-body motion 
network for a soft wearable motion sensing suit. IEEE/ASME Trans. 
Mechatron. 24, 56–66 (2019).

45.	 Wen, F. et al. Machine learning glove using self‐powered 
conductive superhydrophobic triboelectric textile for gesture 
recognition in VR/AR applications. Adv. Sci. 7, 2000261 (2020).

46.	 Wang, M. et al. Gesture recognition using a bioinspired learning 
architecture that integrates visual data with somatosensory data 
from stretchable sensors. Nat. Electron. 3, 563–570 (2020).

http://www.nature.com/natureelectronics


Nature Electronics | Volume 6 | January 2023 | 64–75 75

Article https://doi.org/10.1038/s41928-022-00888-7

Acknowledgements
Part of this work was performed at the Stanford Nano Shared 
Facilities (SNSF), supported by the National Science Foundation 
under award ECCS-2026822. K.K.K. acknowledges support from 
the National Research Foundation of Korea (NRF) for Post-Doctoral 
Overseas Training (2021R1A6A3A14039127). This work is 
partially supported by the NRF Grants (2016R1A5A1938472 and 
2021R1A2B5B03001691).

Author contributions
K.K.K., M.K., S.J., S.H.K. and Z.B. designed the study. K.K.K. and M.K. 
designed and performed the experiments. M.K. and K.K.K. developed 
the algorithms and analysed the data. B.T.N. and Y.N. conducted 
the experiments on the substrate’s property. Jin Kim performed the 
biocompatibility tests. K.P. assisted in the sensor printing and setups. 
J.M., Jaewon Kim, S.H. and J.C. carried out the nanomesh synthesis. 
K.K.K., M.K., S.E.R., S.J., S.H.K., J.B.-H.T. and Z.B. wrote the paper and 
incorporated comments and edits from all the authors.

Competing interests
A US patent filing is in progress by Zhenan Bao and Kyun Kyu Kim.

Additional information
Extended data is available for this paper at  
https://doi.org/10.1038/s41928-022-00888-7.

Supplementary information The online version  
contains supplementary material available at  
https://doi.org/10.1038/s41928-022-00888-7.

Correspondence and requests for materials should be addressed to 
Sungho Jo, Seung Hwan Ko or Zhenan Bao.

Peer review information Nature Electronics thanks Nitish Thakor and 
the other, anonymous, reviewer(s) for their contribution to the peer 
review of this work.

Reprints and permissions information is available at  
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by 
the terms of such publishing agreement and applicable law.

© The Author(s), under exclusive licence to Springer Nature Limited 
2022

http://www.nature.com/natureelectronics
https://doi.org/10.1038/s41928-022-00888-7
https://doi.org/10.1038/s41928-022-00888-7
https://doi.org/10.1038/s41928-022-00888-7
https://doi.org/10.1038/s41928-022-00888-7
http://www.nature.com/reprints


Nature Electronics

Article https://doi.org/10.1038/s41928-022-00888-7

Extended Data Fig. 1 | Soft sensors with intelligence. Taxonomy of augmented soft sensors combined with machine intelligence.
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Extended Data Fig. 2 | Learning robust motion representation from unlabeled data. a, Schematic illustration of the wireless module that transfers multi-joint 
proprioceptive information. Random motions of PIP, MCP, and Wrist motions are collected. b, UMAP embedding of raw random finger motions and after motion 
extraction through TD-C learning.
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Extended Data Fig. 3 | Wireless module for measuring changes of nanomesh. 
a, Schematic illustration of the wireless module that transfers proprioceptive 
information through simple attachment above the printed nanomesh. 
Illustration and image of the module is shown. Flexible printed circuit board 
(FPCB), lithium polymer battery, and connector is shown. Right image depicts 

backview of the module. Nanomesh connector (NC) is applied, and electrical 
contact is made by simple attachment of the module to the printed nanomesh. 
b, Block diagram ofthe main components constituting the wireless module. 
Photograph shows real-time measurement through the module.
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Extended Data Fig. 4 | Model validation accuracies and transfer learning 
accuracies for sensor signal with and without substrate. To investigate how 
substrate-less property contributes to the model discriminating different subtle 
hand motions, the same amount of sensor signals is collected while a user typing 
Numpad keys and interacting with 6 different objects. a, Collected dataset 
is divided into training and validation datasets with a ratio of 8:2 for normal 

supervised learning. b, For transfer learning, we apply our TD-C learning with 
unlabeled random motion data to pretrain our learning model and use the first 
five-shot demonstrations to further transfer learning. Directly attached to the 
finger surface, nanomesh without substrate outperforms sensor with substrates 
in different tasks and training conditions.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Model performance analysis and ablation studies for 
components in our learning models. a, Confusion matrix for numpad typing 
data for each typing stroke after 20 transfer training. b, Confusion matrix for 
object recognition tasks for individual signal frame after 20 transfer training. 
c, More detailed comparison between TD-C Learning and supervised learning 
with last layer modification. For more precise comparison, we additionally 
trained TD-C learning model with labelled data used to train supervised model 
by removing labels. Even with the same number of training samples, our learning 
framework significantly outperform normal supervised learning when the model 

is transferred to predict different tasks. With more easily collectable unlabeled 
training samples, TD-C learning model pretrained with large random motion 
data shows higher accuracies in all transfer training epoch than other models. 
d, UMAP projection of latent vectors of labelled keypad typing data projected 
by our model pretrained with TD-C learning method. e, Ablation study for 
transfer accuracy comparison between applying timewise dependency loss and 
original contrastive learning loss. f, Ablation study for applying phase variable 
by comparing transfer accuracy trends for models with and without phase 
discrimination when inferencing different gestures in MFS.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Details of the learning model architecture.  
a, Illustration of detailed layer structure for signal encoding model. The temporal 
signal patterns are encoded though transformer encoders with the aid of 
attention mechanism. Following linear blocks, MLP block and phase block, utilize 
encoded latent vectors to generate embedding vectors in our feature space and 

phase variables distinguishing active and inactive phases. b, Visualization of 
positional embedding used to advise model time-wise correlation between signal 
frames within a time window. Positional embedding allows the model to process 
temporal signal patterns in parallel using attention mechanisms enabling fast 
encoding of complex signal patterns for real time usages.
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Extended Data Fig. 7 | Ablation Studies on different learning methods 
and different temporal signal data augmentations. a. Cosine similarity for 
supervised learning framework. b. Similarity based on TD-C learning. c, Examples 
of signal patterns before and after applying different data augmentations.  
d, Transfer accuracy comparison for learning models pretrained with different 
data augmentations predicting user numpad typing data. Jittering augmentation 

that does not change signal amplitude or frequencies allows the model to 
generate more transferable feature spaces. e, Summary table of prediction 
accuracy for different data augmentations. Compared to models trained with 
different data augmentations, the model trained with jittering shows 20% higher 
accuracy in average.
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Extended Data Fig. 8 | Prediction of full keyboard. a, Each hand taking charge for the left half and right half of the keyboard. b, Confusion matrix of left side of 
keyboard. c, Confusion matrix of right part of keyboard. (Five-shot demonstrations for each key for transfer training dataset, accuracy left: 93.1 %, right 93.1 %).
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Human research participants
Policy information about studies involving human research participants

Population characteristics Three able-bodied male human subjects between 30 and 35 years old. The study population is a non-vulnerable highly-
educated adult population. 

Recruitment A recruitment was announced by the bulletin board and made it clear that participation is voluntary and that non-
participation will have no impact.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.


	A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition

	Cutaneous nanomesh artificial mechanoreceptor

	Meta-learning and few-shot adaptation to a new user

	Fast adaptation to arbitrary tasks

	Conclusions

	Methods

	Software and system design of wireless measuring module

	Mechanical simulation of substrate-less nanomesh

	Portable printing system

	Biocompatible Ag@Au core–shell nanomesh synthesis

	Nanomesh breathability measurement

	Cell toxicity

	In vivo test (spraying)

	Graph analysis of nanomesh network

	Gesture recognition experiments

	Dataset acquisition methods

	Details of signal preprocessing and data augmentation

	Details of attention mechanism in a transformer encoding block

	Structure and implementation of temporal augmentation contrastive feature learning

	Details of transfer learning with few-shot labelled set

	Reporting summary


	Acknowledgements

	Fig. 1 Artificial sensory intelligence system.
	Fig. 2 Nanomesh and device performance.
	Fig. 3 TD-C learning principle and experimental results on learning performance.
	Fig. 4 Demonstration of fast adaptation to various daily tasks.
	Extended Data Fig. 1 Soft sensors with intelligence.
	Extended Data Fig. 2 Learning robust motion representation from unlabeled data.
	Extended Data Fig. 3 Wireless module for measuring changes of nanomesh.
	Extended Data Fig. 4 Model validation accuracies and transfer learning accuracies for sensor signal with and without substrate.
	Extended Data Fig. 5 Model performance analysis and ablation studies for components in our learning models.
	Extended Data Fig. 6 Details of the learning model architecture.
	Extended Data Fig. 7 Ablation Studies on different learning methods and different temporal signal data augmentations.
	Extended Data Fig. 8 Prediction of full keyboard.




