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With the help of machine learning, electronic devices—including electronic
gloves and electronic skins—can track the movement of human hands

and perform tasks such as object and gesture recognition. However, such
devices remain bulky and lack an ability to adapt to the curvature of the
body. Furthermore, existing models for signal processing require large
amounts of labelled data for recognizing individual tasks for every user.
Here we report a substrate-less nanomesh receptor that is coupled with an
unsupervised meta-learning framework and can provide user-independent,
data-efficient recognition of different hand tasks. The nanomesh, which
ismade from biocompatible materials and can be directly printedon a
person’s hand, mimics human cutaneous receptors by translating electrical
resistance changes from fine skin stretches into proprioception. Asingle
nanomesh can simultaneously measure finger movements from multiple
joints, providing a simple user implementation and low computational
cost. We also develop a time-dependent contrastive learning algorithm
that can differentiate between different unlabelled motion signals. This
meta-learned information is then used to rapidly adapt to various users
and tasks, including command recognition, keyboard typing and

objectrecognition.

Humans can adapt to a diverse range of daily tasks with the aid of sen-
sory feedback. Proprioception, in particular, provides an understand-
ing of the real-time postural configuration of the hand and plays akey
roleininteractive tasks such as object recognition, manipulation and
communication', Fundamental knowledge on proprioceptionis devel-
opedatan early agein children (the sensorimotor stage*) and involves
correlating hand motions with the information relayed by cutaneous

receptorsdistributed throughout various locations of skin associated
with skinstretching during the motion®”. This sensorimotor informa-
tion serves as prior knowledge®’, which helps infants to quickly learn
to perform new tasks with only a few trials. This process constitutes
the basis of meta-learning'®" (Fig. 1a).

Electronic devices canidentify the movement and intended tasks
of the human hand. For example, electromyography wrist bands
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Fig.1]| Artificial sensory intelligence system. a, lllustration of human
sensorimotor stage thatincludes the meta-learning of motions through
cutaneous receptors (proprioceptive information to the central nervous system
(CNS)) and its rapid adaptation to unknown tasks. Resembling this nature, the
first stage of our learning agent extracts the prior knowledge of human motion
as MFS through unsupervised TD-C learning from random hand motion. Prior

knowledge is then transferred with few-shot labels that allows rapid adaptation
to versatile human tasks. b, An artificial sensory intelligence system that consists
of printed, biocompatible nanomesh cutaneous receptors directly connected
withawireless Bluetooth module through a nanomesh connector (NC), and is
further trained through few-shot meta-learning.

and wearable electronic gloves can track hand movements. With the
help of machine learning, these devices can perform complex tasks
such as object interaction”™, translation of finger spelling'>'° and
gesture recognition'”’*, However, their bulkiness and constraints on
body movement limits their widespread adoption. Electronic skin
sensors—such as artificial mechanoreceptors'®*, ultrathin sensors?,
stretchable sensors**** and nanomesh sensors**2°—have rapidly
developedinrecentyears, but they typically require multiple sensors
and a high level of system complexity to pinpoint the motions from
multiple joints®. Furthermore, the algorithms that have been used
in such applications are based on supervised training methods that
require large amounts of labelled data to perform individual tasks™.
Since thelarge variability of tasks and differences inindividual body
shapes generate different sensor signal patterns, these methods
require intensive data collection for every single user and/or task**®
(Extended Data Fig. 1).

In this Article, we report the development of a nanomesh artifi-
cial mechanoreceptor thatis integrated with an unsupervised meta-
learning scheme and can be used for the data-efficient, user-
independent recognition of different hand tasks. The nanomesh is
based on biocompatible materials and can be directly printed onto
skin without an external substrate, whichimproves user comfort® and
increases its sensitivity. The system can collect signal patterns from
fine details of skin stretches and can be used to extract propriocep-
tion information analogous to the way cutaneous receptors provide
signal patterns for hand motion recognition (Supplementary Note 1
and Supplementary Fig.1). With this approach, complex propriocep-
tive signals can be decoded using information from a single sensor
along the index finger, without the need for a multisensing array.
Multijoint proprioceptive information can be reconstructed from
low-dimensional data, reducing the computational processing time
of our learning network (Supplementary Note 2 and Supplementary
Fig.2). When performing different tasks, signal patterns from various
joint movements are transmitted using an attached wireless module
placed on the wrist (Fig. 1b).

Similar to the learning process during an infant’s sensorimotor
stage, our unlabelled random finger motions provide prior motion
representation knowledge. As a result, our learning framework does
not require large amounts of data to be collected for each individual
user. We developed time-dependent contrastive (TD-C) learning to
provide anawareness of temporal continuity and to generate amotion
feature space (MFS) representation of prior knowledge. This allows
our system to learn prior knowledge using unsupervised contrastive
learning from unlabelled signals collected from three different users
to distinguish user-independent, task-specific sensor signal patterns
from random hand motions. This prior knowledge can subsequently
betransferredtoother users with anaccuracy of 80% within 20 transfer
training epochs. We show that the pretrained model can quickly adapt
todifferentdaily tasks—motion command, keypad typing, two-handed
keyboard typing and object recognition—using only afew hand signals.

Cutaneous nanomesh artificial mechanoreceptor
Proprioception—our body’s ability to sense movement, action and
location—relies on encoding mechanical signals collected by numer-
ous cutaneous receptorsinto neural representations, thatis, patterns
of neural activities’. These cutaneous receptors are activated by the
stretching of the skin and can detect various joint movements (Sup-
plementary Note 1). Such a function can be emulated by employing a
single two-terminal substrate-less nanomesh element along the index
finger extending to the wrist. The integrated signals of the entire finger
postures and movements can be collected (Fig. 2a). Due to the direct
contact of the nanomesh with skin, it closely follows the topography
of the skin and transforms even micro-movements into resistance
variations with high sensitivity (Supplementary Fig. 5). Signal outputs
correspondingto fine details of elongation and compression of the skin
due to arbitrary hand movements are then collected and transmitted
by a wireless module (Methods and Extended Data Fig. 3).

Inaddition to the ability to generate proprioception-like diverse
sensing output patterns based on fine movements of finger and
wrist, our nanomesh is biocompatible, breathable and mechanically
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Fig.2|Nanomesh and device performance. a, Comparison between a human
cutaneous receptor and our nanomesh receptor. Resistance variations generated
by the nanomesh are measured through the wireless module. b, Reinforced
nanomesh through consecutive printing of PU and core-shell Ag@Au structures.
The nanomesh shows endurance against cyclic friction and maintains high
breathability and biocompatibility. The image on the right shows the intimate
contact of the nanomesh above the skin with a magnified view via the scanning
electron microscopy (SEM) image. The images are representative of three

nanomesh

Decoupled

1. OR/RO

independent experiments. ¢, Photograph of the portable nanomesh printer.

d, Traditional electronics and substrate-less nanomesh under 15% strain. The
substrate constrains the wrinkles due to its lack of intimate contact (Methods).
e, Nanomesh on the MCP areaiis activated by the PIP movement alone in
traditional electronic design (substrate thickness, 6 pm; modulus, 7 MPa),
whereas no coupling was seen in our design. The nanomesh was printed with

16 cycles of spraying. f, Nanomesh response to both finger and wrist movements.

stable (Fig. 2b). The gold-coated Ag (core)/Au (shell) nanostructures
of the nanomesh prevent the cytotoxic silver ions from direct con-
tact with skin®. The long dimension of the Ag (core) wires (length,
~80 pum) results in high mechanical stability®® (Supplementary
Fig. 5). No inflammation response of skin to the nanomesh was
observed during in vitro and in vivo experiments (Supplementary
Fig. 6). A polyurethane (PU) coating was sprayed onto the nanomesh
to create a droplet-like porous structure to prevent the nanomesh
frombeing easily scratched and retaining an air permeability of more
than40 mm s (Supplementary Fig. 8). Ascratch test was carried out
in which the sample was printed on porcine skin to mimic human
skin. The PU-reinforced nanomesh (Supplementary Fig. 10) outlasted
the unprotected nanomesh (over 1,500 cycles) when subjected to

scratching from a silicon tip (Supplementary Fig. 11). These results
show that the PU-protected nanomesh is suitable for daily activities
(Supplementary Note 4 and Supplementary Figs. 3 and 13), but can
still be removed as needed by rubbing during handwashing (Supple-
mentary Fig. 12). Furthermore, the nanomesh was readily applied to
skin using a custom-designed portable skin-printing device (Fig. 2g,
Supplementary Fig. 14 and Supplementary Video 6). A subsequently
attached silicone-encapsulated wearable wireless module further
provided user comfort and ensured a self-contained system (Extended
DataFig.3 and Supplementary Video 7).

The substrate-less feature of our artificial receptor is a marked
improvement from previously reported substrate-based wear-
able electronics. Due to its ultraconformal nature (Supplementary
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Note 3 and Supplementary Fig. 7), the substrate-less nanomesh enables
capturing proprioceptive signals without losing its local information
(Supplementary Fig. 21). Although ultrathin sensors (sub-micrometre)
were recently demonstrated, challenges remain in terms of reduc-
ing motion artifact noises since even an extremely thin layer can still
suffer from substantial information degradation®. The benefit of
reducing motion artifacts by directly printed sensors on the human
body has been previously demonstrated®. The high conformability
of our substrate-lessinterface s critical in the resistance of the sensor
tomotionartifacts. Asillustrated in Fig. 2d, during the flexion of joints
witha printed substrate-less nanomesh, the strain caused by the open-
ing and closing of the wrinkles contributed to a majority of detected
changes. However, the presence of asubstrate reduces the conformabil-
ity of the sensor and hinders the detection of changes associated with
wrinkle movement, making it harder to detectintricate changes from
different types of finger movement. In addition, we designed a control
experiment in which a thin layer of PU substrate (6 um) was applied
before nanomesh printing and compared with two separate printed
substrate-less nanomesh sensors, to gather signals from both proximal
interphalangeal (PIP) and metacarpophalangeal (MCP) regions (Fig. 2e
and Supplementary Fig. 9). During the isolated PIP movement under
normal conditions, the stretching of the substrate placed on the top
of MCP joints (tugging the MCP region; Fig. 2e) resulted in strong sig-
nal changes in the MCP (Sig #2) area. However, for the substrate-less
nanomesh, most of the strain was centred on the PIP joint, activating
only the nanomeshes on the PIP (Sig #1) area (resolution, 15 mm; Sup-
plementary Fig. 9). The localized and decoupled signal properties of
the substrate-less nanomesh enabled better learning performance
(Extended Data Fig. 4). In contrast, performance degradation can be
observed onapplying asubstrate. The nanomesh further differentiated
various patterns of hand motions (Fig. 2f) and exhibited high durability
on various environmental effects (Supplementary Note 4 and Sup-
plementary Fig. 3). These overall characteristics of the substrate-less
nanomesh rendered the measurement of multijoint proprioceptive
information with a single sensor element possible (Supplementary
Fig.21). Importantly, our approach enabled the minimization of circuit
complexity and computing resources by providing low-dimensional
but highly informative proprioceptive information to the learning
network (Supplementary Note 2).

Meta-learning and few-shot adaptationtoa

new user

Inspired by the development process of proprioception during the
sensorimotor stage, we aim to create a general latent feature space,
termed MFS, to represent prior knowledge of human finger motions
and make it generalizable to different users and daily tasks. For arbi-
trary users with newly printed sensors, different signal patterns will
begeneratedincluding changesin the signal amplitudes and frequen-
cies due to distinctive hand shapes and postures (Supplementary
Fig.15). When alearning model tries to infer hand gestures from signals
generated by users that were not included in the training dataset, the
variabilities lead to substantial out-of-distribution and domain shift
errors”*, Furthermore, considering the diversity of hand gestures
and tasks performed in daily lives, it was necessary to both collect a
labelled training dataset and modify the model architecture for each
individual task when applying previous supervised learning models to
general usage. To address these limitations, we set out to generate a
separable MFS that can be used on signal patterns not shownin the train-
ing dataset. Although other stable methods exist for training neural
networks to build feature spaces for later adaptations, these methods
either deal with formalized data (tokenized words*>** or images***) or
have restricted target users and tasks'>*. Consequently, these meth-
ods are unable to use small amounts of random motion data to dif-
ferentiate pattern differences caused by variations in both tasks and
user. Therefore, instead of mapping sensor signals to specific motion

labels, we developed alearning model that utilizes unlabelled random
motion datato meta-learn, allowing us to discriminate between differ-
entsignals by projecting signalsinto a separable space. Inshort, aftera
new user provides asmall set of actions, these signals are separatedin
our MFS to be compared with real-time user inputs, which allows our
metric-based inference mechanismto correctly recognize gestures of
the user even though the signal patterns are different from those of the
users and tasks in the training data.

To generate MFS without labels, we adopt an unsupervised learn-
ing method called contrastive learning in which the model learns to
discriminate different inputs by maximizing the similarities of positive
pairs augmented from the same instances and minimizing the similari-
ties of different instances. However, recently developed methods®*
have been designed to encode image data and do not consider time
correlation. Analogous to how the awareness of motion continuity in
time helps infants to develop a stable perception®, models without
time consideration would inevitably omit consecutive sensor sig-
nals, resultingin an unstable motion space, which lowersthe accuracy
(Extended DataFig. Se). Furthermore, we need to carefully select data
augmentation methods, such that the corresponding hand postures
of the data-augmented signals remain consistent.

We, therefore, propose TD-C learning that uses temporal features
to generate MFS from unlabelled random hand motions. Instead of
providing specific labels to train our neural network, we generated
positive pairs based on time-wise correlation and trained our model
to minimize distances (based on cosine similarity) between the posi-
tively paired signals in our encoded latent space. First, we generated
strong positive pairs through dataaugmentation. Given asensorinput
grouped withasliding time window (Supplementary Note 5and Supple-
mentary Fig. 4 show the model performance for various time-window
sizes), we generated two augmented sensor signals throughjittering
data augmentation (Extended Data Fig. 7). Although other temporal
signal augmentation methods exist*’, these methods altered the signal
amplitude patterns and hindered the model from distinguishing dif-
ferent motions (Extended Data Fig. 7c-e and Methods). Originating
from the same sensor signals, these two signals were considered as a
strong positive pair since they represent the same motion. Second, we
assigned consecutive augmented signals (distanced at most a half of
the time window) as positive pairs. These consecutive time windows
represent similar hand poses since our hand motions are continuous.
Therefore, we assigned a connection strength between the signals
based on their time differences and our model receives discounted
positive rewards that are proportional to the connection strength
for grouping consecutive sensor signals (Methods). A transformer
encoder* supported by the attention mechanism was adopted to
encode long-term temporal signal patterns without iterative signal
processing. Giving a tolerance for the model to map semantically
similar sensor signals based on temporal correlation, the model could
generate better quality features and showed stronger performances
whenitwas transferred to different tasks. Extended DataFigs.2and 7a,b
illustrate the experimental results of our model’s ability to distinguish
different sensor signals even without any labels.

Toinvestigate the model’s ability to extract useful motion features,
we collected unlabelled random finger motions (bending and rotation)
ofthe PIP, MCP and wrist motion signals through asingle substrate-less
nanomesh and then conveyed the information through the TD-C net-
work (Extended Data Fig.1aand Methods). The joint signals of PIP, MCP
and wrist are clearly represented in the uniform manifold approxima-
tion and projection (UMAP)***¢ (Extended DataFig. 1b), illustrating the
ability of the TD-C model to extract useful information from coupled
signals. The signals of the combined motion of PIPand MCP joints were
located in between the PIP-only and MCP-only motions, and therefore,
our nanomesh sensor signals contain all three joint movements and
can be used to effectively translate skin stretches into multijoint pro-
prioception. Moreover, to determine the use of resistive variations
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Fig. 3| TD-Clearning principle and experimental results on learning
performance. a, Sensor signal processing and unsupervised TD-C learning for
learning the MFS. b, Transfer learning and metric-based real-time inference
mechanism with provided few-shot labelled dataset gathered from each arbitrary
user. Dim 16 and MIPS stand for dimension of 16 and maximum inner product
search, respectively. ¢, Few-shot dataset and real-time sensor signal prediction

Transfer training epoch

for different users typing nine different keys. d, UMAP projection of latent
numpad typing vectors, where the grey dots indicate inactive phase signals and
coloured dots indicate active phase signals. e, Inference accuracy trends for nine-
class numpad typing with further transfer training epochs: model pretrained
with TD-C learning (blue line) and the same model with last linear layer
modification for classification pretrained with supervised learning (red line).

between joints for complex tasks, we utilized these signals for actual
motion prediction. As shown in Supplementary Fig. 21, our system was
ableto determine the position and bending angle of motion (bending
and rotational), as well as multimodal movements.

The extracted motion features were then used for few-shot adap-
tationtoarbitrary tasks. To overcome domain shift issues, we adopted
ametric-based inference mechanism to predict users’ gestures in
various daily tasks (Fig. 3b). The model was first fine-tuned to refine
the MFS by additionally giving rewards for mapping the same-classed
latent vectorsto a closer feature space. The model performs maximum
inner product search (MIPS) with a given few-shot labelled dataset to
identify the current gesture. Comparing signals generated from the
same user with the aid of the highly separable MFS, the model can
avoid domain shift issues and utilize motion knowledge generated
from TD-C learning. Details of the learning procedures are further
described in Methods and those of the pseudocode are provided in
Supplementary Fig.17.

We note that in between two different gestures (active phase),
there exists an intermediate period where users have no specific
intention (inactive phase).Since inactive phases occur between active
phases of motion, it is unavoidable for the model to project inactive
phase signals near to active phase signals and considering temporal
correlations (Fig. 3d). To avoid misclassification caused by neighbour-
ing inactive phases, we additionally train a phase block in transfer
learning to clearly delineate the active and inactive phase of gestures
(Supplementary Fig. 16). Specifically, input signals are regarded as
active phase signalsif the corresponding phase variables generated by
the phase block are higher than a predefined threshold. Therefore, in
actualtesting time, we performed MIPS only between the active phase
signals and few-shot demonstrations annotated as active phases. Our
model with the phase block clearly separated these entangled phases,
and ablation studies on adding the phase block are shownin Extended
Data Fig. 5f. The user-wise few-shot labelled dataset and the corre-
sponding model predictions areillustrated in Fig. 3c. With transferable
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with nanomesh printed on both hands. The predicted letters appear on the user
interface as a user consecutively types various sentences. The acrylic keyboard
identifier is placed beneath to show the intention of the user (Supplementary
Fig.20).d, Group of recognition objects and UMAP projection of embedded
vectors for signals in a few-shot demonstration set. The sequential changes of
positionin the projected embedding space of real-time user signals as the user
starts to interact with an object.

MFS and user-wise metric-based inference, our model can robustly
predict hand actions from different users. In addition, our learning
framework can handle variations in nanomesh density (Supplemen-
tary Fig. 18). Our model’s ability to transfer knowledge to users with
newly printed sensors compared with a traditional supervised learning
framework was demonstrated in Fig. 3e. Although the model trained
with supervised learning methods required more than 3,000 training
epochstoadapttothe new user, the model trained with our developed
learning framework showed more than80% accuracy within 20 transfer
training epochs. Extended Data Fig. Sdillustrates the UMAP projection

ofembedded signal vectorsin MFSinto atwo-dimensional space where
feature vectors were discriminated into correlated feature spaces.

Fast adaptation to arbitrary tasks

Having demonstrated the ability of our learning framework to use
unlabelled random motion data to learn MFS and make gesture infer-
ence for arbitrary users with few-shot demonstrations, several rep-
resentative daily tasks were subsequently conducted, which include
command signal recognition, one-handed numpad typing (Fig. 4b),
two-handed sentence typing (Fig. 4c) and object recognition (Fig. 4d).
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These applications demonstrate the potential of using our systemin
daily life, including applications such as human motion recognition,
human device interactions and human object interactions. For each
individual task, the user first printed the sensor by applying 16 cycles
of nanomesh printing through the portable printing machine (Fig.
4a). A wireless module was then attached to the two terminals of the
nanomesh. The user then provided a few-shot labelled dataset by
performing each individual gesture five times. The generated sensor
signalsand the corresponding labels were transmitted to the receiver
by the module. For grouping of the latent feature vectors based on a
giventask-specific dataset, we further trained the model for additional
20 transfer training epochs by providing positive rewards for mapping
the same gestures into closer vectors.

We observed that our model can efficiently adapt to identify new
gestures added to our few-shot labelled dataset without requiring any
modifications to model structures or intensive training processes.
Eventhoughinitially trained only for lateral finger motions, our model
can be further enhanced to recognize vertical motions by further
providing corresponding few-shot labels. After initial training for
left-and right-hand gestures, our model could then recognize gestures
for all directions (left, right, up and down) by additionally providing
up- and down-hand gesture signals into the initially trained model
(Fig.4b and Supplementary Video 1). Furthermore, our model was able
to distinguish fast and subtle movements of finger motions that move
along the user’s small imaginary keypad by discriminating between
nine different numpad keys (Supplementary Video 2). Our model
achieved 85% accuracy within 20 transfer epochs (Extended Data
Fig. 5¢). We used the numpad typing task as a major benchmark for
comparing our methods withothers, since it consists of nine classes of
similar hand postures. To analyse the transfer capability of the training
framework to the opposite hand, an additional sensor was printed on
the left hand, allowing the user to type with two hands on the entire
QWERTY keyboard (Fig. 4c). When given a sentence, an arbitrary
user initially provided few-shot labels by typing each character five
times. The pretrained model was further transferred to two different
models to discriminate between the two-handed keyboard typing
signals (Supplementary Fig. 19) of typed sentences, namely, ‘Hello
World’ and ‘Imagination’ (Supplementary Video 3). Moreover, it also
can be directly applied to predicted longer sentences, such as ‘No
legacyis sorichas honesty’ (William Shakespeare) and ‘1am the mas-
ter of my fate lam the captain of my soul’ (Invictus) (Supplementary
Video 4). Minor typos may occur when typing longer sentences and
canbereadily modified through open-source word correction librar-
ies for further practical usage (Supplementary Fig. 25). The above
keyboard application demonstrated that our inference mechanism
can accurately deal with asynchronously generated multiple sensor
signals to decode wide finger motion ranging from the left and right
ends of the keyboard. The full keyboard of the alphabet was predict-
able (Extended Data Fig. 8), where each hand took charge of the left
half and right half of the keyboard.

In the same way as humans identify objects through gestural
information duringinteractions’, users with the nanomesh could con-
tinuously rub the surface of different objects and eventually recognize
them. The sphere diagram (Fig. 4d) illustrates the UMAP projections
of embedded labelled dataset onto the contour of a sphere, where
different colours represent six different objects. Since the shape of
the pyramid and cone are similar and thus hard to distinguish from
each other, the corresponding embedded points (Fig. 4d, yellow and
purple) were initially intermixed together. As a result, although the
hand interacted with a pyramid, the model initially predicted a cone.
Continuously rubbing twice allowed the model to eventually predict
it as a pyramid. The embedded vectors continuously move from the
yellow region to the boundary and then to the purple region (Fig. 4d).
This is akin to humans taking time to recognize objects, and altering
their minds during interactions with various sections of the object.

The model can classify the objects with 82.1% accuracy via 20 transfer
epochsversus thousands of epochs using asupervised training method
(Extended DataFigs. 4 and 5b and Supplementary Video 5).

Conclusions

We havereported asubstrate-less nanomesh artificial mechanorecep-
tor equipped with meta-learning. The system mimics human sensory
intelligence and exhibits high efficacy and rapid adaptation to a variety
of human tasks. Similar to cutaneous receptors recognizing motion
viaskin elongation, our nanomesh receptor gathers hand propriocep-
tion signal patterns with asingle sensing element. The substrate-less
feature of the nanomesh receptor allows intricate signal patterns
to be collected from many areas using a single sensor. With a highly
separable MFS, our learning framework can effectively learn to dis-
tinguish different signals, and this knowledge can be used to robustly
predict different user tasks with the aid of a metric-based inference
mechanism. The robustness of our model allows quick adaptation to
multiple usersregardless of variations in density for printed nanomesh
receptors. It is expected that increasing the number of nanomesh
elements to five fingers or more will enable the recognition of more
complex motions, allowing future applicationsin robotics, metaverse
technologies and prosthetics.

Methods

Software and system design of wireless measuring module
The device consists of aminiaturized flexible printed circuit board that
includes ananalogue-to-digital converter sensing element, Bluetooth
low-energy module, lithium polymer battery and anisotropic flexible
connector (Extended Data Fig.1). An embedded nanowire network at
theend of the connector allows conformal and direct contact with the
existing nanomesh electronics. The two terminals of the nanomesh are
connected to the wireless module via direct contact with the embed-
ded nanowire network; then, the translated digital signals froma volt-
age divider are further conveyed to the receiver through Bluetooth
transmission atadatarate of 30 Hz. The compact wireless module can
measure arbitrary hand motions and maintain conformal contact with
the printed nanomesh. The wireless systemis programmed through a
systemon chip (CC2650, Texas Instruments) with the Code Composer
Studio software (version 9.3.0, Texas Instruments). The packet of the
measured analogue sensor signalsis transferred at adatarate of 30 Hz,
where the receiving system on chip transforms the received packets
into auniversal asynchronous receiver-transmitter (UART) data trans-
mission. A Python-integrated LabVIEW (version 3.6.8) system transfers
these datainto the learning network for task identification.

Mechanical simulation of substrate-less nanomesh
Straindistribution of traditional substrate-based and our substrate-less
electronics is compared through the finite element method (version
5.6, COMSOL Multiphysics). The depth and width of the wrinkles are
set as 500 and 200 pm, respectively. A thin layer (6 pm, measured by
Bruker Dektak XT-A; Supplementary Fig. 22) of PU material (Alberd-
ingk) isapplied above the wrinkle to investigate the strain distribution
of substrate-based electronics.

Portable printing system

Thelinear stage and nozzle are moved by the Nema11 stepping motor,
controlled by anL298N controlling driver (Supplementary Fig.14). The
spray nozzle (air-atomizing nozzles, Spraying Systems) is connected
t020 psiair pressure through acompact air compressor (Falcon Power
Tools). The nozzle is controlled viaa 5V activated solenoid gas valve,
and the entire nozzle ismoved through the linear stage with 20 mm s™*
speed. A5 mg ml”of Ag-Aunanomeshsolutionis prepared and sprayed
for16 cycles over the entire hand covered with a polydimethylsiloxane
stencilmask. Then, three cycles of diluted (25 mg mlI™) water-based PU
(U4101, Alberdingk) were spray coated.
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Biocompatible Ag@Au core-shell nanomesh synthesis

First, Ag nanowires (length, ~-80 pm; diameter, -80 nm) were synthe-
sized by amodified one-pot polyol process. In 50 ml of ethylene glycol,
0.4 g of polyvinylpyrrolidone (M,,-360,000) and 0.5 g of silver nitrate
were sequentially dissolved using amagneticstirrer. Then, 600 pl FeCl,
(2 mM) was rapidly injected into the mixture and stirred mildly. The
stirrer was carefully removed from the mixture solution once all the
chemicals were thoroughly mixed. Finally, the mixture solution was
immersedin apreheatedsilicone oil bath (130 °C). After 3 h of nanowire
growth, the resultant solution was cleaned using acetone and ethanol
toremove the chemical residues along with centrifugation at 1,500xg
for10 min for three times. The purified Ag nanowires were redispersed
in water for use. For preparation of the Au precursor solution, 30 mg
chloroauricacid (formulaweight, 339.79; Sigma-Aldrich),17 mg sodium
hydroxide (Samchun Chemicals) were dissolved in 70 ml distilled
water. After 30 min, the hue of the solution turned from yellowish to
transparent, and 33 mg sodium sulfite (Sigma-Aldrich) was added to
the solution. For the Ag nanowires preparation solution, 800 mg of
poly(vinylprrolidone) (M,, 55,000; Sigma-Aldrich), 70 mg sodium
hydroxide, 300 mg L-ascorbic acid (Samchun Chemicals) and 10 mg
sodium sulfite were added to 100 ml of the previously synthesized Ag
nanowire solution (Ag, 20 mg). Thereupon, the Au precursor solution
was slowly pouredinto the Ag nanowire preparation solution for 2 min.
After 30 min, the Ag@Au core-shell nanowires were fully synthesized
and cleansed for three times through centrifugation and dispersed
into water with 10 mg ml™ concentration and sprayed for nanomesh
formation (Supplementary Fig. 23).

Nanomesh breathability measurement

The measurement was conducted using a custom-built acrylic air
channel (Supplementary Fig. 8). An air pump was built at the back end
oftheair channelto create a consistent airflow, and the nanomesh was
installed in the centre. The flow rate and pressure drop between the
nanomesh were monitored via a flow meter and differential manom-
eter. The pressure drop is measured at varying flow rates, and the air
permeability of different samples is calculated through Darcy’s law
(g= —%,whereq, k,P,pand L denote the flux, permeability, pressure,
viscosity and channel length, respectively).

Cell toxicity

Cell toxicity is compared between the control, only PU, Ag nanomesh
with PUand Ag@Au nanomeshwith PU.L929 (KCLB), amouse fibroblast
cell, was cultured in Dulbecco’s modified Eagle’s medium (11885-084,
Thermo Fisher Scientific) containing 10% foetal bovine serum (F2442,
Sigma-Aldrich) and Anti-Anti (15240-062, Thermo Fisher Scientific) at
37 °C with 5% CO,. Nanomeshes with different conditions (PU, Ag with
PU and Ag-Au with PU) were prepared and used for in vitro toxicity
evaluation. After attaching the sample to the bottomin a1/10 size of the
wellarea, 5 x 10° cells per well were seeded on the six-well culture plate
(3516; Costar). After incubation for 24 h, cell morphological changes
were observed and photographed using a Nikon Eclipse TS100 micro-
scope. Toanalyse the toxicity of cells,an MTT assay was performed using
three wells for each sample. The cells were incubated in 0.5 mg ml™!
MTT solution (M6494, Thermo Fisher Scientific) at 37 °C for 1 h; then,
the solution was removed and dimethyl sulfoxide was used to dissolve
MTT formazan. The absorbance was measured at an optical density of
540 nmusing an Epoch Microplate spectrometer (BioTek Instruments)
and normalized using a control (unpaired, two-tailed Student’s ¢-test).

Invivo test (spraying)

Four-week-old Hos:HR-1 male mice were purchased from Central Labora-
tory Animal for spraying. All the experiments involving mice were per-
formed with the approval of the Konkuk University Institutional Animal
Care and Use Committee (KU21212). All the animals were maintained in

al2hlight/dark cycle at 23 +1°C and 50 +10% relative humidity with
free access to food and water. Hos:HR-1 mice were anaesthetized by
intraperitoneal administration of alfaxalone (100 mg kg™) and xylazine
(10 mg kg ™). After placing the anaesthetized mouse under the portable
printing system, the nanomesh solution was sprayed. A surgical cloth
withawindow of about1x 4 cm”was covered so that the nanomesh could
beapplied only tothe exposed area. To maintain the body temperature,
aheating pad or aninfrared lamp was used. After application, the mice
were returned to the cage for recovery; 24 h later, CO, euthanasia was
performed to obtain the skin sample. Fixed skin samples were dehy-
drated (70%, 80%, 90% and 100% ethanol), transferred to xylene for2 h
incubation and infiltrated with paraffin. Paraffin blocks were prepared
usinga Tissue-Tek TEC5 tissue-embedding console system (Sakura Fine-
tekJapan), and sectioned using the Microm HM 340E microtome (Ther-
moScientific) at a thickness of 5 pm. Subdermal implant of the Ag-Au
nanomeshisalso carried out within seven days (Supplementary Fig. 6).
The tissue slices were placed on a glass slide (Marienfeld) and stained
with haematoxylin and eosin. The slides were photographed using an
Olympus IX70 fluorescence microscope and a Nikon D2X instrument.

Graph analysis of nanomesh network

Graph theory is used to analyse the electrical properties of the nano-
mesh network (Supplementary Fig. 5). First, the adjacent matrix (A) is
formed from the distributed random nanomesh network (a random
nanowire (length, 100 pm) network is distributed in 500 x 500 um?).
Then, theincidence matrix (/) is formed to generate the graph network
ofthe nanomesh, where the edge and node represents nanowires and
intersections, respectively. Accordingto Ohm’s law, the current flowin
each wire can be calculated by i = Clx, where Cis the conductivity and
Ixrepresents the voltage difference of the nodes (xis the node matrix).
Then, the current of each node can be expressed by I"CIx following
Kirchhoff’s law. Therefore, the voltage and current of the network can
be related by Laplacian matrix L = LC/", with the relationship of Vi=L.
Voltage and total resistance of the nanomesh can be derived using the
boundary conditions of theinput and output current flow of both ends
oftheedge (i(0) =1,i(N) =-1). Theresistance of the network under 20%
strain and the sensitivity of the nanomesh under 15% strain are derived
fromaveraging 100 simulation runs for each segment. The percolation
thresholdisfound atsix cycles of spraying, where the network density
canbe derived as 180#/500 um. Therefore, the approximate nanomesh
density per spraying cycle can be obtained.

Gesturerecognition experiments

The nanomesh was applied with 16 cycles of spraying (linear stage with
20 mms'speed and 10 mg ml™ of Ag-Au nanomesh solution). Then, the
wireless module is attached to the terminal of the nanomesh and three
usersare asked to performdata collections for three times for each appli-
cation (total, 10 min). Each few-shot data collection lasted around 1 min
(-1,800 data points), with 30 s of rest before the next trial. The data are
saved tocheckwhetherthey are effectively collected, and the adaptation
performanceisevaluated. This process tooklessthan 5 min (the achieved
raw data are shown in Supplementary Fig. 24). All the experiments were
performed in strict compliance with the guidelines of the Institutional
Review Board at Seoul National University (projecttitle, Electrophysiologi-
calsignal sensing by direct-printed electronic skin; IRBno.2103/001-008).
Informed consent was obtained from all the participants.

Dataset acquisition methods

Previous studies on gesture classification from sensor signals have
focused onmodel prediction accuracies with adesigned experimental
setup where the users areinstructed to performaspecific task having
afixed number of classes. Our model framework is designed to learn
transferable information from unlabelled motion data of a limited
number of users and be generalized to various daily tasks with only a
few labelled sets given as guidance. Our general objective here is to
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verify the ability of pretrained models to adapt to various daily tasks
and compare their ability to create anormal supervised learning frame-
work. There are three different types of dataset that are used in our
experiment: pretrained dataset X, ..., = {s3, few-shot labelled dataset
X“SJ = (xk ak} for task adoption and task-wise testing dataset

train

Xieq” = {x*}. The pretrained dataset is used when pretraining our
models and it is generated from random motions (900 s of random
finger movements). The models that are used for task-wise adaptation
(Supplementary Videos 1-7) are trained with unlabelled data that are
collected from three users performing random hand motions when
skin sensors are printed on their fingers. To quantitatively compare
our training framework to a normal supervised learning framework,
we additionally collected alabelled dataset as auser types the keyboard
numpad. The keyboard inputs are regarded as data labels and we use
these labels for the supervised pretrained model. Quantitative com-
parisons between our framework and supervised pretrained frame-
works are based on the pretrained model using the numpad typing
dataset, whereas labels are only used for supervised learning frame-
work. We prepared four different applications, each representing
real-life hand computer interaction cases (Fig. 4c-e). For each applica-
tion, we collected afive-shot labelled dataset for transfer learning our
model. Interms of the five-shot dataset, it means a user performs each
gesture class for five times, for example, in the object interaction task,
rubbing an object from the leftend to the right end would be regarded
asasingleshot. The corresponding gesture labels are collected as the
useristyping the keyboard keys that represents specific gesture labels.
The collected few-shot labelled dataset is then used for retraining the
data-embedding model. For reflecting real-life usage scenarios, the
task-wise testing dataset is collected as a user naturally interacts with
the system, for example, typing different numpad keys or rubbing
random objects after retraining the model.

Details of signal preprocessing and data augmentation

To limit the sensor input domain, the sensor values are normalized
through minmax normalization. The minimum and maximum values
amongeachindividual pretrained dataset and few-shot labelled dataset
are used tonormalize the corresponding dataset. For real-time user test
scenarios, the user signal inputs are normalized based on the minimum
and maximum values of a given user labelled dataset. Given a signal
group collected for the same user R ={r;, i € N}, the corresponding
normalized signal group S = {s; € [0, 1], i € N} is generated as

r; —min(R)

5= hax (R) — min(R)’

vr; € R.

The sensor signals are collected at 30 fps and signal s, represents
the normalized sensor signal collected in time frame t € N (s,and s,
are 1/30 s apart). Consecutive 32 sensor signals are grouped into a
single model input, so that the model can utilize not only the cur-
rent sensor signal but also the temporal signal patterns to generate
signal embeddings. A sliding time window of size 32 with stride 1is
used to group consecutive raw signal inputs to generate model inputs
(xt = [St731r St-30r+++rSe-1r St])'

Two different types of signal data augmentation are used for
unique purposes and generating MFSs. First, signaljittering is used to
generate strong positive pairs for contrastively training our learning
model. Givenaninputsignal sequencex,, astrong pair [x;,x,']is gener-
ated as follows:

'

. , b e
X, = [s[_sl,s[_w,“. ,st_l,st] ,wheres] =s;+ 2],z ~ N(0,0.1),

/" "
X, 30"

¢ N

=[s S »S. 1, wheres) =s; +2/',z/ ~ N(0,0.1).

2’—31’ -1
Generated from the same input signal, the strong pair [x;, ] ]will
beregarded as positive pairs having positive strength of size 1. When

generating a strong positive pair with dataaugmentation, we need to
carefully choose which data augmentations are used. We further
demonstrate the experimental results on task transfer accuracy for
different types of data temporal signal augmentation methods
(Extended Data Fig. 7).

Although out-of-distribution issues are mitigated with data
normalization that bounds input signal domains, we further use
data-shifting augmentations to mitigate signal differences between
different users and printed sensors. Given aninput signal sequencex,,
another input signal sequence x; is generated as follows.

X, + 2,z ~ U[0.3,0.5] for max(x,) < 0.5

. X, — 2,z ~ U[0.3,0.5] for min (x;) > 0.5

Unlike signals generated by jittering, which were regarded as
positive pairs representing the same hand motions, we regard shifted
signals as a completely new input. Since the amplitude of a sensor
signal is correlated with the amount of sensor deformation, shifting
signals in the y axis would result in new signal patterns representing
different hand motions. At the same time, the model can learn how
to embed sensor signals positioned in various input domains. This is
the conventional way of data augmentation that is used to increase
theamount of training datasets by providing more training examples.

Details of attention mechanismin a transformer encoding block
Givenasignal input sequence with asize of 32, x, € [0, 1], the model first
embeds the sensor signals into high-dimensional vectors x,. € R332
withasensorembeddingblock, ..., consisting of asingle linear layer:

Xenct = [Ut731’ U305+ s V15 Ut] »Ui =fenc(si) € Rn’v" € [t =31 t]~

Before encoding the signals into an MFS with attention mecha-
nism, we add positional embedding to the embedded vectors so that
the model can understand the relative position of input sequences
and encoding themin parallel. Positional embedding is one of the key
features of transformer architecture®, which allows the model to avoid
iterative computation for each time frame. The position-encoded input
vector x_enc_pos,is generated as follows:

_ _ [,,pos pos pos . pos
Xencpos, = Xe"Cz+pOS_[UI—SI’Ut—30""’Ut—1’Ut ]
= [Vr31,Ut-30, - » V1, Ue] + [POS;, POSy, ..., POSin o, |»
sin (wy, t),ifi = 2k L
pos; :=

" | cos (@, 0),ifi =2k +1° *~ 100002

This allows unique positional vectors to be added to different
positionsin atime window (Extended Data Fig. 6b).

Entire signal windows are encoded into latent vectors by using the
transformer encoding layers that utilize multihead attention blocks.
Given an embedded vector x_enc_pos, € R****? consisting of 32 vec-
tors representing sensor signals for each time frame, the model first
encodesthevectorintothree representative vectors called query, key,
and value,. For each query, the model compares its values with other
keys to generate attention weights, and these weights are multiplied
by their values to generate embedded vectors that have referred to
entire time-window signals. This can be computed in parallel by matrix
multiplication, which massively increases the model’s encoding speed
for sequential signals.

query, =W, (up‘”),keyt”_ =W,

' G (u‘."”), value,, = W, (u"os),

i i

ie[t-3L6.j€[0,3]

where W e R32x(nheadx32)indijcates linear layers that project the embed-
ded vector o7 into multiple triplet heads comprising query, key and
value. We note that instead of generating a single triplet (query, key
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andvalue) for each embedded vector v, we generate multiple (query,
keyand value) triplets that are called heads. Utilizing the ability to easily
compute attentionin parallel, the modelis designed to simultaneously
generate multiple attentions. In this work, we generated four headsin
parallel, whichis halfthe number of heads compared with the original
language model for fast real-time computation.

Given the query and key value heads, namely, query,, and key[kj,
respectively, the model first computes attention as follows:

uer
query,,

attny, = softmax( x keylj) Jiet-3L1,/€[0,3].

The generated attention vectors contain weights that determine
the amount of information that the model gathers from different
values. Therefore, for each time-frame vector, the model generates
output vectors as

0y, = attng X valuetkj.

J

Therefore, the output vectors for thejth head are computed as

o, =o,,Vie[t-3L1]],

where
o, = concat (ZZ=[_31 O » vj € [0, 3]).

Werepeat the above multihead attention mechanismthree times.
Through stacked attention blocks, the model can encode temporal
signal patterns by learning how to extract useful information from
sequential signal inputs withoutiteratively processing every time frame.

Afterencoding temporal signal patterns, we further project output
vectors with a position-wise feedforward layer. The projected vectors
are concatenated to generate a latent vector representing the entire
signal sequence as below:

g, = concat (W;o,, +o,,Vi € [t —31,t]).

This is a linear block applied to each time-frame output with a
residual connection. Using integrated representation q,, the model
generates motion-feature vector and phase variables as below:

2, =f,(qe). 2, € RS,

@, = softmax (sigmoid (fz(q,))) . @, € R?,

wheref,andf,are two separate three-layered linear blocks with a Leaky
ReLU activation function between the linear layers. At the end of the
phase block, we apply the sigmoid function and softmax function so
that the phase variables express the binary state of the input signal
(active andinactive phases). We note that the phase block is not trained
and used in the pretraining stage.

Structure and implementation of temporal augmentation
contrastive feature learning

Giventhelatent motion feature vectors Z={z} encoded by the model,
we apply timely discounted contrastive loss, which is a generalization
of InfoNCE* by applying guided tolerance for mapping semantically
similar signals to a closer space. For each latent motion feature vector,
we have a time variable ¢ that indicates the time that corresponding
sensor signals are collected. Based on the time distance between two
differentlatent features vectors, we subdivide theminto positive pairs
Z" and negative pairs Z as follows:

(@z) € Z, if |t;— )| < Dy/T

(zn2z) € Z,if [ti— 6| > D/t

where Tis a hyperparameter that determines the tolerance distance
and D, is the window size for the sliding time window.

We note that the latent motion features generated from the same
motion signals through data augmentation would have zero distance
since the time labels are the same. For each positive pair, we assignatime
discount factor based onthe distance between the two vectors as below.

TD; = exp (—a |t; — tj'z)

Here ais ahyperparameter that determines the discount rate; in
this work, we set it as 4. Therefore, applying the time discount factor,
we can get anew loss function as below:

TDC_Loss(Z) =

1D, xexp( cossim(z;.j) )

temp

cossim(p) cossimp) |
ZPEZ* TqueXp( temp )+ZPEZ’ eXp( temp )

—Fijst(z,7)ez+ log

where temp refers to the temperature and it is set as 0.07. By giving
a time discount factor and extending the boundary of positive pairs
for signals correlated with their measurement time, we can avoid the
model from pushing semantically similar signals apart.

Details of transfer learning with few-shot labelled set

For each task, such as keyboard typing or object recognition, we
fine-tune the pretrained models with afew-shot labelled dataset given
byaspecificuser.Intransfer learning, we aimto further refine our MFS
for more clearly discriminating the task gestures and simultaneously
training the phase block so that the model can distinguish active and
inactive phases for the current user.

Therefore, given a few-shot labelled dataset X! = {x*, a*, #*}, the
model first encodes each signal input to MFS to form the labelled set
zZser = (2K, ok, ak, ), where ZXis the encoded latent motion feature vector
ofx*and @¥is a predicted phase variable. The gesture label a* represents
oneoftheactiongestures;in particular, 0 actionwould indicate theinac-
tive phase where the useris notintending to performany of the gestures
inthetask. Therefore, we additionally generate the phase label as

k _ H o S
ag =0, ifax=0
k _ if Ak
ag = 1, ifa"#0
The modelis then fine-tuned with the loss function stated below:

Loss (Zi5r ) = TDC s ({24}) + aNCELoss ({z¥, a*}) + BBCELoss ({2, ak })

train

where NCELoss indicates InfoNCE*® where we regard signals with the
same labels as positive pairs, and BCELoss is a binary cross-entropy
loss. Hyperparameters a and 8 are assigned for controlling the ratio
between different loss values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The collected finger datasets for various daily tasks performed in
this study are available via GitHub at https://github.com/meta-skin/
metaskin_natelec. Further data that support the plots within this paper
and other findings of this study are available from the corresponding
authorsupon reasonable request.

Code availability

The source code used for TD-C learning, rapid adaptation and
results are available via GitHub at https://github.com/meta-skin/
metaskin_natelec.
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Extended Data Fig. 1| Soft sensors with intelligence. Taxonomy of augmented soft sensors combined with machine intelligence.
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Extended Data Fig. 2| Learning robust motion representation from unlabeled data. a, Schematicillustration of the wireless module that transfers multi-joint
proprioceptive information. Random motions of PIP, MCP, and Wrist motions are collected. b, UMAP embedding of raw random finger motions and after motion

extraction through TD-C learning.
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Extended Data Fig. 3| Wireless module for measuring changes of nanomesh.
a, Schematicillustration of the wireless module that transfers proprioceptive
information through simple attachment above the printed nanomesh.
Illustration and image of the module is shown. Flexible printed circuit board
(FPCB), lithium polymer battery, and connector is shown. Right image depicts
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|| |

backview of the module. Nanomesh connector (NC) is applied, and electrical
contact is made by simple attachment of the module to the printed nanomesh.
b, Block diagram ofthe main components constituting the wireless module.
Photograph shows real-time measurement through the module.
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Extended Data Fig. 4 | Model validation accuracies and transfer learning
accuracies for sensor signal with and without substrate. To investigate how
substrate-less property contributes to the model discriminating different subtle
hand motions, the same amount of sensor signals is collected while a user typing
Numpad keys and interacting with 6 different objects. a, Collected dataset

is divided into training and validation datasets with a ratio of 8:2 for normal

supervised learning. b, For transfer learning, we apply our TD-C learning with
unlabeled random motion data to pretrain our learning model and use the first
five-shot demonstrations to further transfer learning. Directly attached to the
finger surface, nanomesh without substrate outperforms sensor with substrates
indifferent tasks and training conditions.
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Extended Data Fig. 5| Model performance analysis and ablation studies for
components in our learning models. a, Confusion matrix for numpad typing
datafor each typing stroke after 20 transfer training. b, Confusion matrix for
object recognition tasks for individual signal frame after 20 transfer training.

¢, More detailed comparison between TD-C Learning and supervised learning
with last layer modification. For more precise comparison, we additionally
trained TD-C learning model with labelled data used to train supervised model
by removing labels. Even with the same number of training samples, our learning
framework significantly outperform normal supervised learning when the model

is transferred to predict different tasks. With more easily collectable unlabeled
training samples, TD-C learning model pretrained with large random motion
datashows higher accuracies in all transfer training epoch than other models.
d, UMAP projection of latent vectors of labelled keypad typing data projected
by our model pretrained with TD-C learning method. e, Ablation study for
transfer accuracy comparison between applying timewise dependency loss and
original contrastive learning loss. f, Ablation study for applying phase variable
by comparing transfer accuracy trends for models with and without phase
discrimination when inferencing different gesturesin MFS.
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Extended DataFig. 6 | Details of the learning model architecture. phase variables distinguishing active and inactive phases. b, Visualization of

a, lllustration of detailed layer structure for signal encoding model. The temporal ~ positional embedding used to advise model time-wise correlation between signal
signal patterns are encoded though transformer encoders with the aid of frames within a time window. Positional embedding allows the model to process
attention mechanism. Following linear blocks, MLP block and phase block, utilize ~ temporal signal patterns in parallel using attention mechanisms enabling fast
encoded latent vectors to generate embedding vectorsin our feature space and encoding of complex signal patterns for real time usages.
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Extended Data Fig. 7| Ablation Studies on different learning methods

and different temporal signal data augmentations. a. Cosine similarity for
supervised learning framework. b. Similarity based on TD-C learning. ¢, Examples
of signal patterns before and after applying different data augmentations.

d, Transfer accuracy comparison for learning models pretrained with different
dataaugmentations predicting user numpad typing data. Jittering augmentation

that does not change signal amplitude or frequencies allows the model to
generate more transferable feature spaces. e, Summary table of prediction
accuracy for different dataaugmentations. Compared to models trained with
different data augmentations, the model trained withjittering shows 20% higher
accuracy in average.
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Extended Data Fig. 8 | Prediction of full keyboard. a, Each hand taking charge for the left half and right half of the keyboard. b, Confusion matrix of left side of
keyboard. ¢, Confusion matrix of right part of keyboard. (Five-shot demonstrations for each key for transfer training dataset, accuracy left: 93.1%, right 93.1%).
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Policy information about cell lines

Cell line source(s) Mouse fibroblast cells (L929) were purchased from Korean Cell Line Bank (KCLB), Seoul, South Korea.
Authentication None of the cell lines used were authenticated
Mycoplasma contamination All cell lines tested negative for mycoplasma contamination

Commonly misidentified lines  None
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Four-week-old Hos:HR-1 male mice were used from Central Laboratory Animal Inc. (Seoul, South Korea)
Wild animals No wild animals were used in the study

Field-collected samples  No field collected samples were used in the study




Ethics oversight All experiments involving mice were performed with the approval of Konkuk University Institutional Animal Care and Use Committee
(KU21212).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Three able-bodied male human subjects between 30 and 35 years old. The study population is a non-vulnerable highly-
educated adult population.

Recruitment A recruitment was announced by the bulletin board and made it clear that participation is voluntary and that non-
participation will have no impact.

Ethics oversight IRB at Seoul National University (Project title, Electrophysiological signal sensing by direct-printed electronic skin, IRB no.,
2103/001-008). Informed consent was obtained from all participants.
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Note that full information on the approval of the study protocol must also be provided in the manuscript.
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